Citation: | XIAO Yu, LI Zehao, WANG Chao. Unsupervised learning-based panoramic unfolded image stitching method for rock mass borehole wall[J]. Journal of Mine Automation,2025,51(5):80-86. DOI: 10.13272/j.issn.1671-251x.2024100008 |
Traditional methods for panoramic unfolded image stitching of rock mass borehole walls suffer from insufficient robustness in establishing feature correspondences between adjacent images, as well as poor quality, limited quantity of extracted image feature points and otherc problems. Meanwhile, supervised learning methods cannot obtain sufficiently precise labeled matching point pairs. To address these issues, an unsupervised learning-based panoramic unfolded image stitching method for rock mass borehole wall is proposed. Multi-scale feature extraction was performed on two adjacent panoramic unfolded images of the rock mass borehole wall to be stitched, using a ResNet network improved with grouped convolutions. A matching degree cross-correlation calculation module was introduced to identify and align features within the feature maps, thereby determining the spatial relationships between corresponding feature maps. A global and local deformation offset calculation network module precisely aligned spatial features of the images. Furthermore, homography deformation and image grid deformation modules effectively eliminated feature distortions between adjacent images, achieving overall alignment and fine local adjustments, enabling accurate registration of local features and deformations. Experimental results showed that this method effectively overcame issues such as image feature displacement, content misalignment, loss of detailed features, and stitching failure. The stitching seams exhibited almost no visible artifacts, improving the overall quality and visual effect of the stitched images. The method outperforms other mainstream image stitching approaches in terms of Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR) in overlapping regions, and Structural Similarity (SSIM) index, significantly enhancing the stitching accuracy of panoramic unfolded images of rock mass borehole walls.
[1] |
朱合华,潘柄屹,武威,等. 岩体结构面信息采集及识别方法研究进展[J]. 应用基础与工程科学学报,2023,31(6):1339-1360.
ZHU Hehua,PAN Bingyi,WU Wei,et al. Review on collection and extraction methods of rock mass discontinuity information[J]. Journal of Basic Science and Engineering,2023,31(6):1339-1360.
|
[2] |
夏丁,葛云峰,唐辉明,等. 数字钻孔图像兴趣区域分割与岩体结构面特征识别[J]. 地球科学,2020,45(11):4207-4217.
XIA Ding,GE Yunfeng,TANG Huiming,et al. Segmentation of region of interest and identification of rock discontinuities in digital borehole images[J]. Earth Science,2020,45(11):4207-4217.
|
[3] |
邹先坚,王川婴,宋欢. 全景钻孔图像自动识别技术在工程实践中的应用研究[J]. 应用基础与工程科学学报,2022,30(1):246-256.
ZOU Xianjian,WANG Chuanying,SONG Huan. Application of automatic recognition technique for the panoramic borehole images obtained in engineering practice[J]. Journal of Basic Science and Engineering,2022,30(1):246-256.
|
[4] |
苑朝,黄诺飞,蒋阳,等. 基于改进旋转不变性二进制描述算法的电力场景图像拼接[J]. 电力科学与工程,2024,40(1):31-38.
YUAN Chao,HUANG Nuofei,JIANG Yang,et al. Power scene images mosaic based on improved oriented fast and rotated brief algorithm[J]. Electric Power Science and Engineering,2024,40(1):31-38.
|
[5] |
郑阳阳,王慧琴,王可,等. 改进网格单应性投影变换的文物多镜头光谱图像拼接方法[J]. 计算机工程与应用,2024,60(21):225-235. DOI: 10.3778/j.issn.1002-8331.2310-0386
ZHENG Yangyang,WANG Huiqin,WANG Ke,et al. Multi-lens spectral image mosaic method of cultural relics with improved grid projection transformation[J]. Computer Engineering and Applications,2024,60(21):225-235. DOI: 10.3778/j.issn.1002-8331.2310-0386
|
[6] |
邹先坚,王川婴,宋欢. 岩体孔内摄像视频高精度快速成图方法研究[J]. 工程科学与技术,2021,53(4):158-167.
ZOU Xianjian,WANG Chuanying,SONG Huan. A high-precision and fast image forming method for borehole camera video of rock mass[J]. Advanced Engineering Sciences,2021,53(4):158-167.
|
[7] |
GAO Junhong,KIM S J,BROWN M S. Constructing image panoramas using dual-homography warping[C]. Conference on Computer Vision and Pattern Recognition,Colorado Springs,2011:49-56.
|
[8] |
ZARAGOZA J,CHIN T J,BROWN M S,et al. As-projective-As-possible image stitching with moving DLT[C]. IEEE Conference on Computer Vision and Pattern Recognition,Portland,2013:2339-2346.
|
[9] |
RANI V,NABI S T,KUMAR M,et al. Self-supervised learning:a succinct review[J]. Archives of Computational Methods in Engineering,2023,30(4):2761-2775. DOI: 10.1007/s11831-023-09884-2
|
[10] |
AN Jianping,YANG Kai,GAO Xiaozheng,et al. Sustainable ultra-dense heterogeneous networks[M]//Sustainable Wireless Communications. Singapore:Springer Nature Singapore,2022:7-19.
|
[11] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778.
|
[12] |
李雪浩,肖秦琨,杨梦薇. 基于分组卷积的轻量级图像超分辨率重建[J]. 激光杂志,2023,44(3):126-132.
LI Xuehao,XIAO Qinkun,YANG Mengwei. Lightweight image super-resolution algorithm based on grouping convolution[J]. Laser Journal,2023,44(3):126-132.
|
[13] |
COHEN T S,WELLING M. Group equivariant convolutional networks[C]. The 33rd International Conference on Machine Learning,New York,2016:2990-2999.
|
[14] |
VAN LAARHOVEN T. L2 regularization versus batch and weight normalization[EB/OL]. [2024-09-27]. https://arxiv.org/abs/1706.05350v1.
|
[15] |
GU Xiaodong,FAN Zhiwen,ZHU Siyu,et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:2492-2501.
|
[16] |
WANG Meiqi,LU Siyuan,ZHU Danyang,et al. A high-speed and low-complexity architecture for softmax function in deep learning[C]. IEEE Asia Pacific Conference on Circuits and Systems,Chengdu,2018:223-226.
|
[17] |
杜港,侯凌燕,佟强,等. 基于BRISK和改进RANSAC算法的图像拼接[J]. 液晶与显示,2022,37(6):758-767. DOI: 10.37188/CJLCD.2021-0292
DU Gang,HOU Lingyan,TONG Qiang,et al. Image mosaicing based on BRISK and improved RANSAC algorithm[J]. Chinese Journal of Liquid Crystals and Displays,2022,37(6):758-767. DOI: 10.37188/CJLCD.2021-0292
|
[18] |
ABDEL-AZIZ Y I,KARARA H M,HAUCK M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering & Remote Sensing,2015,81(2):103-107.
|
[19] |
张省,朱伟. 基于SIFT匹配和RANSAC算法的超分辨率重建[J]. 测绘通报,2019(10):119-122.
ZHANG Sheng,ZHU Wei. Super-resolution reconstruction based on SIFT matching and RANSAC algorithm[J]. Bulletin of Surveying and Mapping,2019(10):119-122.
|
[20] |
NIE Lang,LIN Chunyu,LIAO Kang,et al. Unsupervised deep image stitching:reconstructing stitched features to images[J]. IEEE Transactions on Image Processing,2021,30:6184-6197. DOI: 10.1109/TIP.2021.3092828
|
[21] |
QIN Chunbin,RAN Xiaotian. Efficient unsupervised image stitching using attention mechanism with deep homography estimation[J]. Computers,Materials & Continua,2024,79(1):1319-1334.
|
1. |
张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 .
![]() | |
2. |
刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 .
![]() | |
3. |
尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 .
![]() | |
4. |
贾良杰,胡子波,赵娟. 基于永磁变频技术的刮板输送机调速系统节能分析. 煤矿机械. 2023(03): 139-141 .
![]() | |
5. |
胡而已,张耀. 激光煤流量测量中光斑条纹过饱和问题研究. 煤炭科学技术. 2023(02): 377-389 .
![]() | |
6. |
郝洪涛,王凯,丁文捷. 基于超声阵列的输送带动态煤量检测系统. 工矿自动化. 2023(04): 120-127 .
![]() | |
7. |
吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 .
![]() | |
8. |
陈湘源,薛旭升. 基于线性模型划分的煤流体积测量. 工矿自动化. 2023(07): 35-40+106 .
![]() | |
9. |
朱富文,侯志会,李明振. 轻量化的多尺度跨通道注意力煤流检测网络. 工矿自动化. 2023(08): 100-105 .
![]() | |
10. |
刘飞,张乐群,潘红光,李利. 带式输送机煤量检测技术及其发展趋势. 中国煤炭. 2023(09): 77-83 .
![]() | |
11. |
郭永涛,裴文良,马永飞,张旭华,谢海峰,寇丽梅. 矿用隔爆型煤量扫描装置的设计与应用. 集成电路应用. 2023(10): 322-323 .
![]() | |
12. |
汪连成. 刮板输送机智能化技术及应用. 煤矿机械. 2022(01): 138-140 .
![]() | |
13. |
刘新龙,胡平,吕晨辉,赵安新,李学文. 基于激光红外线扫描的带式输送机煤流量实时检测技术. 煤炭技术. 2022(01): 217-219 .
![]() | |
14. |
王利欣,杨秀宇,袁鹏喆,尉瑞,秦文光,李波,张恩明. 智能掘进工作面智能视频安全管理系统的应用. 煤矿机械. 2022(09): 200-203 .
![]() | |
15. |
孙鹏亮,吴少伟. 基于红外扫描装置的转载机煤量监测技术研究. 数字通信世界. 2022(08): 63-65 .
![]() | |
16. |
郑忠友,朱磊,程海星,张光磊. 综放工作面采放协调关系及智能装备研究. 煤矿机械. 2021(01): 54-56 .
![]() | |
17. |
卢进南,韩建国,王常宝,郭友瑞,王志良. 热电厂运煤车厢动态监测及体积测量方法. 煤矿机电. 2021(01): 49-53+56 .
![]() | |
18. |
孙延飞. 悬臂掘进机截割方量测量系统设计. 煤矿机械. 2021(09): 24-26 .
![]() | |
19. |
崔亚平,朱时雪. 基于激光线扫描的桥梁检测仪器误差自动化矫正方法研究. 自动化与仪器仪表. 2020(01): 32-35 .
![]() | |
20. |
韩涛,黄友锐,张立志,徐善永,许家昌,鲍士水. 基于图像识别的带式输送机输煤量和跑偏检测方法. 工矿自动化. 2020(04): 17-22 .
![]() | |
21. |
王杰. 矿用隔爆型煤量扫描装置设计与应用. 煤. 2020(06): 49-50 .
![]() | |
22. |
赵倩,陈杨军. 激光技术的轨道表面瑕疵识别系统设计. 激光杂志. 2020(08): 110-114 .
![]() | |
23. |
王文清,田柏林,冯海明,陈兴明,李萍,任安祥. 基于激光测距矿用带式输送机多参数检测方法研究. 煤炭科学技术. 2020(08): 131-138 .
![]() | |
24. |
武国平,梁兴国,胡金良,葛小冬. 图像处理和SVM应用于煤矸石分选的实验研究. 信息技术. 2019(01): 97-102+107 .
![]() |