LIU Guangwei, GUO Zhiqing, LIU Wei. Prediction model of slope deformation in open pit mines based on GJO-MLP[J]. Journal of Mine Automation,2023,49(9):155-166. DOI: 10.13272/j.issn.1671-251x.2023070017
Citation: LIU Guangwei, GUO Zhiqing, LIU Wei. Prediction model of slope deformation in open pit mines based on GJO-MLP[J]. Journal of Mine Automation,2023,49(9):155-166. DOI: 10.13272/j.issn.1671-251x.2023070017

Prediction model of slope deformation in open pit mines based on GJO-MLP

More Information
  • Received Date: July 04, 2023
  • Revised Date: September 20, 2023
  • Available Online: September 27, 2023
  • The deformation of open-pit mine slopes is influenced by various factors such as geological structure, hydrogeological conditions, mining activities, etc., making the prediction model complex. It is difficult to accurately capture all influencing factors. At present, a large number of monitoring devices are deployed around the slope of open-pit mines to record real-time displacement data of open-pit mine slopes. The data has the features of high-dimensional, temporal correlation, and nonlinear. Traditional slope stability analysis methods cannot effectively predict slope deformation without knowing other conditions and only data, it is necessary to use a data-based model to predict the displacement data of open-pit mine slopes in advance for slope stability analysis. In order to solve the above problems, a deformation prediction model for open-pit mine slopes based on the golden jackal optimized multilayer perception machine (GJO-MLP) is proposed. Each agent in GJO is independent of each other and can accelerate the training process of optimizing MLP through parallel computing. GJO can combine the nonlinear modeling and feature extraction capabilities of MLP, making the optimized MLP more advantageous in dealing with complex problems. To test the feasibility and effectiveness of GJO-MLP, GJO-MLP is compared and analyzed with ant colony algorithm optimization based MLP (ACO-MLP), gravity search algorithm optimization based MLP (GSA-MLP), and differential evolution algorithm optimization based MLP (DE-MLP). The simulation results on six datasets show that under the same experimental conditions, GJO-MLP shows better optimization performance compared to the other three algorithms. The slope deformation prediction model based on GJO-MLP is applied to the slope deformation prediction of Baorixile open-pit mine and Huapingzi slope deformation prediction. The results show that under the same conditions, compared to the other three algorithms, the slope deformation prediction model based on GJO-MLP not only show better predictive performance in predicting slope deformation data, but also has better feasibility and robustness.
  • [1]
    田会,王忠鑫. 露天开采对环境的扰动行为及其控制技术[J]. 煤炭学报,2018,43(9):2416-2421. DOI: 10.13225/j.cnki.jccs.2018.0928

    TIAN Hui,WANG Zhongxin. Disturbance behavior of open-pit mine on environment and its control technology[J]. Journal of China Coal Society,2018,43(9):2416-2421. DOI: 10.13225/j.cnki.jccs.2018.0928
    [2]
    杨朝云,李广悦. 地下转露天开采条件下某露天矿高陡边坡稳定性分析[J]. 有色金属工程,2019,9(3):89-97.

    YANG Chaoyun,LI Guangyue. Stability analysis of high-steep slope in an open-pit mine under the condition of transferring from underground into open pit mining[J]. Nonferrous Metals Engineering,2019,9(3):89-97.
    [3]
    吕游. 露天矿高陡边坡变形失稳机理及防治措施[J]. 露天采矿技术,2022,37(6):18-21.

    LYU You. Instability mechanism and preventive measures of high and steep slope deformation in open-pit mine[J]. Opencast Mining Technology,2022,37(6):18-21.
    [4]
    杨勇,张忠政,胡军,等. 基于随机权重法改进PSO−ELM的露天矿边坡稳定性分析[J]. 有色金属工程,2022,12(5):128-134. DOI: 10.3969/j.issn.2095-1744.2022.05.016

    YANG Yong,ZHANG Zhongzheng,HU Jun,et al. Slope stability analysis of open-pit mine based on improved PSO-ELM with random weight method[J]. Nonferrous Metals Engineering,2022,12(5):128-134. DOI: 10.3969/j.issn.2095-1744.2022.05.016
    [5]
    曹兰柱,王珍,王东,等. 露天矿滑坡预警理论与方法研究[J]. 中国安全科学学报,2017,27(3):163-168.

    CAO Lanzhu,WANG Zhen,WANG Dong,et al. Research on theory and method of landslide early warning in open-pit mine[J]. China Safety Science Journal,2017,27(3):163-168.
    [6]
    YANG Yukun,ZHOU Wei,JISKANI I M,et al. Slope stability prediction method based on intelligent optimization and machine learning algorithms[J]. Sustainability,2023,15(2). DOI: 10.3390/su15021169.
    [7]
    李柱,谢锋. 渗流−应力耦合作用下露天矿边坡稳定性研究[J]. 工矿自动化,2018,44(12):83-88.

    LI Zhu,XIE Feng. Research on slope stability of open-pit mine under coupled seepage-stress[J]. Industry and Mine Automation,2018,44(12):83-88.
    [8]
    王文才,李俊鹏,王创业,等. 边帮煤采动影响下边坡变形演化特征及失稳形态分析[J]. 煤炭科学技术,2023,51(7):321-336. DOI: 10.13199/j.cnki.cst.2022-0593

    WANG Wencai,LI Junpeng,WANG Chuangye,et al. Analysis of failure mode and deformation evolution characteristics and instability form of slopes under the influences of highwall mining[J]. Coal Science and Technology,2023,51(7):321-336. DOI: 10.13199/j.cnki.cst.2022-0593
    [9]
    刘善军,吴立新,毛亚纯,等. 天−空−地协同的露天矿边坡智能监测技术及典型应用[J]. 煤炭学报,2020,45(6):2265-2276. DOI: 10.13225/j.cnki.jccs.zn20.0362

    LIU Shanjun,WU Lixin,MAO Yachun,et al. Spaceborne-airborne-ground collaborated intelligent monitoring on open-pit slope and its typical applications[J]. Journal of China Coal Society,2020,45(6):2265-2276. DOI: 10.13225/j.cnki.jccs.zn20.0362
    [10]
    王东,郭富宁,曹兰柱,等. 复合煤层露天矿软岩边坡参数逐阶段优化方法研究[J]. 煤炭科学技术,2019,47(10):75-80. DOI: 10.13199/j.cnki.cst.2019.10.008

    WANG Dong,GUO Funing,CAO Lanzhu,et al. Study on stage-by-stage optimization method for slope parameters of soft rock open-pit mine in composite coal seam[J]. Coal Science and Technology,2019,47(10):75-80. DOI: 10.13199/j.cnki.cst.2019.10.008
    [11]
    BAO Min,CHEN Zhonghui,ZHANG Lingfei,et al. Reliability analysis of prestressed anchors in rock slopes of open-pit mines[J]. Journal of Mountain Science,2022,19(7):2100-2110. DOI: 10.1007/s11629-021-7224-2
    [12]
    杨志勇,佟德君. 复杂地质条件下边坡参数优化及控制技术[J]. 露天采矿技术,2020,35(2):46-48,52.

    YANG Zhiyong,TONG Dejun. Slope parameters optimization and control technology under complex geological conditions[J]. Opencast Mining Technology,2020,35(2):46-48,52.
    [13]
    刘玉凤,马明. 顺层蠕滑型露天矿土质边坡滑距预测方法研究[J]. 煤炭科学技术,2019,47(11):84-89.

    LIU Yufeng,MA Ming. Study on prediction method for sliding distance of soil slope bedding creeping in open pit mine[J]. Coal Science and Technology,2019,47(11):84-89.
    [14]
    赵理想. 基于机器学习的露天煤矿边坡位移预测模型研究[D]. 徐州:中国矿业大学,2022.

    ZHAO Lixiang. Research on prediction model of surface coal mine slope displacement based on machine learning[D]. Xuzhou:China University of Mining and Technology,2022.
    [15]
    康恩胜,赵泽熙,孟海东. 基于EEMD−HW−PSO−ELM耦合模型的排土场边坡位移预测模型[J]. 黄金科学技术,2022,30(4):594-602.

    KANG Ensheng,ZHAO Zexi,MENG Haidong. Displacement prediction of dump slope based on EEMD-HW-PSO-ELM coupling model[J]. Gold Science and Technology,2022,30(4):594-602.
    [16]
    陈兰兰,杨雨云,肖海平,等. 基于GA−BP神经网络的露天矿边坡变形预测分析[J]. 有色金属科学与工程,2022,13(6):106-112. DOI: 10.13264/j.cnki.ysjskx.2022.06.014

    CHEN Lanlan,YANG Yuyun,XIAO Haiping,et al. Prediction and analysis of open pit slope deformation based on a GA-BP neural network[J]. Nonferrous Metals Science and Engineering,2022,13(6):106-112. DOI: 10.13264/j.cnki.ysjskx.2022.06.014
    [17]
    张研,范聪,吴哲康,等. 基于PSO−RVM的矿山边坡变形量预测模型[J]. 金属矿山,2022(10):191-196. DOI: 10.19614/j.cnki.jsks.202210027

    ZHANG Yan,FAN Cong,WU Zhekang,et al. Forecast model of mine slope deformation based on PSO-RVM[J]. Metal Mine,2022(10):191-196. DOI: 10.19614/j.cnki.jsks.202210027
    [18]
    金爱兵,张静辉,孙浩,等. 基于SSA−SVM的边坡失稳智能预测及预警模型[J]. 华中科技大学学报(自然科学版),2022,50(11):142-148.

    JIN Aibing,ZHANG Jinghui,SUN Hao,et al. Intelligent prediction and alert model of slope instability based on SSA-SVM[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(11):142-148.
    [19]
    胡军,邱俊博,栾长庆,等. 基于IGWO−SVM的露天矿边坡变形预测[J]. 矿冶工程,2022,42(1):15-18.

    HU Jun,QIU Junbo,LUAN Changqing,et al. Deformation prediction based on IGWO-SVM for open-pit mine slopes[J]. Mining and Metallurgical Engineering,2022,42(1):15-18.
    [20]
    李达,瞿伟,张勤,等. 融合多层感知机和优化支持向量回归的滑坡位移预测模型[J]. 武汉大学学报(信息科学版),2023,48(8):1380-1388.

    LI Da,QU Wei,ZHANG Qin,et al. Landslide displacement prediction model integrating multi-layer perceptron and optimized support vector regression[J]. Geomatics and Information Science of Wuhan University,2023,48(8):1380-1388.
    [21]
    李建新. 基于小波支持向量机的边坡变形预测研究[D]. 南昌:江西理工大学,2020.

    LI Jianxin. Research on slope deformation prediction based on wavelet support vector machine[D]. Nanchang:Jiangxi University of Science and Technology,2020.
    [22]
    DEWI S K,UTAMA D M. A new hybrid whale optimization algorithm for green vehicle routing problem[J]. Systems Science & Control Engineering,2021,9(1):61-72.
    [23]
    CHOPRA N,ANSARI M M. Golden jackal optimization:a novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications,2022,198. DOI: 10.1016/j.eswa.2022.116924.
    [24]
    YUAN Chao,MOAYEDI H. The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition[J]. Engineering with Computers,2020,36:1705-1714. DOI: 10.1007/s00366-019-00791-4
    [25]
    RATHER S A,BALA P S. A hybrid constriction coefficient-based particle swarm optimization and gravitational search algorithm for training multi-layer perceptron[J]. International Journal of Intelligent Computing and Cybernetics,2020,13(2):129-165. DOI: 10.1108/IJICC-09-2019-0105
    [26]
    SAFARZADEH A,ZAJI A H,BONAKDARI H. 3D flow simulation of straight groynes using hybrid DE-based artificial intelligence methods[J]. Soft Computing,2019,23:3757-3777. DOI: 10.1007/s00500-018-3037-9
    [27]
    孙华芬. 尖山磷矿边坡监测及预测预报研究[D]. 昆明:昆明理工大学,2014.

    SUN Huafen. Research on monitoring and forecasting of Jianshan Phosphate Mine slope[D]. Kunming:Kunming University of Science and Technology,2014.
  • Cited by

    Periodical cited type(5)

    1. 朱历萍. 添加CO后瓦斯爆炸反应变化规律分析. 煤. 2025(01): 62-66+103 .
    2. 罗振敏,罗传旭,刘利涛,张帆. 多元混合气体对瓦斯爆炸动力学特性影响研究. 安全与环境学报. 2024(08): 2949-2960 .
    3. 刘宇,罗蒙蒙,田富超,谷午,王凯,梁运涛. C_2H_2/CH_4燃烧特性实验及反应动力学研究. 燃烧科学与技术. 2024(05): 473-480 .
    4. 虞勇,张雷林. CuCl-CeO_2复合型CO消除剂的制备及其性能. 中国安全科学学报. 2024(08): 186-194 .
    5. 王振兴,王洋,韩东洋,任晓伟. 氢气对瓦斯爆炸化学动力学行为影响研究. 煤炭与化工. 2022(09): 140-145 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (947) PDF downloads (37) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return