Citation: | HAO Hongtao, WANG Kai, DING Wenjie. A dynamic coal quantity detection system for conveyor belt based on ultrasonic array[J]. Journal of Mine Automation,2023,49(4):120-127. DOI: 10.13272/j.issn.1671-251x.2022080048 |
[1] |
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021.
|
[2] |
王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8.
WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13 th Five-Year Plan period and future prospects[J]. Coal Science and Technology,2021,49(9):1-8.
|
[3] |
刘宝军. 矿井带式输送机能耗优化控制系统研究[D]. 西安: 西安科技大学, 2020.
LIU Baojun. Research on energy consumption optimization control system of mine belt conveyor[D]. Xi'an: Xi'an University of Science and Technology, 2020.
|
[4] |
张雅俊,乔铁柱. 基于速度控制的多级带式输送机顺序启动方法[J]. 工矿自动化,2017,43(1):52-55.
ZHANG Yajun,QIAO Tiezhu. Method of sequence start of multi-level belt conveyors based on speed control[J]. Industry and Mine Automation,2017,43(1):52-55.
|
[5] |
HILTERMANN J,LODEWIJKS G,SCHOTT D L,et al. A methodology to predict power savings of troughed belt conveyors by speed control[J]. Particulate Science & Technology,2011,29(1):14-27.
|
[6] |
GAN Hong,CHEN Kun,ZHONG Xinghong. Static analysis on the detection system of an electronic belt scale[J]. Applied Mechanics and Materials,2013,345:525-529. DOI: 10.4028/www.scientific.net/AMM.345.525
|
[7] |
DJOKORAYONO R, ARFITTARIAH, PRIANTAMA D B, et al. Design of belt conveyor flow scale using gamma radiation technique[C]. Engineering Physics International Conference, 2019.
|
[8] |
姜玉峰,张立亚,李标,等. 基于单线激光雷达的带式输送机煤流量检测研究[J]. 煤矿机械,2022,43(8):151-153.
JIANG Yufeng,ZHANG Liya,LI Biao,et al. Study on coal flow detection of belt conveyor based on single-line LiDAR[J]. Coal Mine Machinery,2022,43(8):151-153.
|
[9] |
关丙火. 基于激光扫描的带式输送机瞬时煤量检测方法[J]. 工矿自动化,2018,44(4):20-24.
GUAN Binghuo. Detection method of instantaneous coal quantity of belt conveyor based on laser scanning[J]. Industry and Mine Automation,2018,44(4):20-24.
|
[10] |
胡而已. 基于激光扫描的综放工作面放煤量智能监测技术[J]. 煤炭科学技术,2022,50(2):244-251.
HU Eryi. Intelligent monitoring technology of coal caving in fully-mechanized caving face based on laser scanning[J]. Coal Science and Technology,2022,50(2):244-251.
|
[11] |
徐世昌,程刚,袁敦鹏,等. 基于三维点云的带式输送机跑偏及堆煤监测方法[J]. 工矿自动化,2022,48(9):8-15,24.
XU Shichang,CHENG Gang,YUAN Dunpeng,et al. Belt conveyor deviation and coal stacking monitoring method based on three-dimensional point cloud[J]. Journal of Mine Automation,2022,48(9):8-15,24.
|
[12] |
顾振, 施寅生, 杨春雨. 基于边缘引导双目视觉测量的带式输送机煤量测量系统[C]. 第31届中国过程控制会议, 徐州, 2020: 250.
GU Zhen, SHI Yinsheng, YANG Chunyu. Coal quantity measuring system of belt conveyor based on edge-guided binocular vision measurement[C]. The 31st Chinese Process Control Conference, Xuzhou, 2020: 250.
|
[13] |
华明明, 葛锡聪. 基于图像处理的带式输送机煤流量监测系统[C]. 第30届全国煤矿自动化与信息化学术会议暨第11届中国煤矿信息化与自动化高层论坛, 海口, 2022: 210-218.
HUA Mingming, GE Xicong. Coal flow monitoring system for belt conveyor based on image processing[C]. The 30th National Coal Mine Automation and Informatization Academic Conference and the 11th China Coal Mine Informatization and Automation High Level Forum, Haikou, 2022: 210-218.
|
[14] |
WANG Guimei, LI Xuehui, YANG Lijie. Dynamic coal quantity detection and classification of permanent magnet direct drive belt conveyor based on machine vision and deep learning[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35(11). DOI: 10.1142/S0218001421520170.
|
[15] |
寇金成. 基于传感器检测技术的选煤厂煤流协同控制系统设计[J]. 煤矿机电,2021,42(3):71-74.
KOU Jincheng. Design of coal flow cooperative control system based on sensor detection technology[J]. Colliery Mechanical & Electrical Technology,2021,42(3):71-74.
|
[16] |
王宗省,管振栋,张欣,等. 基于图像处理的输送带煤量动态计量研究[J]. 煤炭工程,2020,52(8):138-142.
WANG Zongsheng,GUAN Zhendong,ZHANG Xin,et al. Dynamic measurement of coal quantity on belt conveyor based on visual processing[J]. Coal Engineering,2020,52(8):138-142.
|
[17] |
贺杰,王桂梅,刘杰辉,等. 基于图像处理的皮带机上煤量体积计量[J]. 计量学报,2020,41(12):1516-1520.
HE Jie,WANG Guimei,LIU Jiehui,et al. Volume measurement of coal volume on belt conveyor based on image processing[J]. Acta Metrologica Sinica,2020,41(12):1516-1520.
|
[18] |
陈广立. 超声波煤流传感器在胶带变频调速系统中的应用[J]. 陕西煤炭,2016,35(6):83-86.
CHEN Guangli. Application of ultrasonic coal flow sensor in variable frequency speed regulation system[J]. Shaanxi Coal,2016,35(6):83-86.
|
[19] |
杨栋,江虹,罗颖,等. 基于FPGA的多路传感信号采集系统设计[J]. 仪表技术与传感器,2022(6):75-79.
YANG Dong,JIANG Hong,LUO Ying,et al. Design of multi-channel sensor signal acquisition system based on FPGA[J]. Instrument Technique and Sensor,2022(6):75-79.
|
[20] |
黄平,杨理践,高松巍,等. 基于STM32的多通道探头阵列低频电磁检测系统研究[J]. 仪表技术与传感器,2021(9):38-42,53.
HUANG Ping,YANG Lijian,GAO Songwei,et al. Research on low-frequency electromagnetic detection system with multi-channel probe array based on STM32[J]. Instrument Technique and Sensor,2021(9):38-42,53.
|
[21] |
王甲福,常海天,刘志远. 基于Qt的非接触测量系统软件设计[J]. 长春工业大学学报,2018,39(1):51-55.
WANG Jiafu,CHANG Haitian,LIU Zhiyuan. Software design of a non-contact measurement system based on Qt[J]. Journal of Changchun University of Technology,2018,39(1):51-55.
|
1. |
范巧艳, 董洁, 郭攀. 基于超分辨率深度图像修复的输送带煤流检测算法. 金属矿山. 2025(07)
![]() | |
2. |
葛世荣. 刮板输送机技术发展历程(四)——智能化成套装备. 中国煤炭. 2024(05): 1-12 .
![]() | |
3. |
尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 .
![]() | |
4. |
赵鑫,乔铁柱,冀杰,刘亮亮,武宏旺. 基于RGB-D视觉信息融合的带式输送机煤流量检测方法研究. 煤炭技术. 2024(07): 225-229 .
![]() | |
5. |
王涛. 基于改进MobileNet的带式输送机煤量检测研究. 能源与环保. 2024(07): 198-202 .
![]() | |
6. |
尹瑞,张冬雪,倪强. 基于数组的刮板输送机运载模型及煤量计算算法研究. 工矿自动化. 2024(08): 84-90 .
![]() | |
7. |
牛亚凯. 基于超声波传感器的输送机煤流控制方法研究. 机械管理开发. 2024(12): 221-223 .
![]() | |
8. |
吴江伟,南柄飞. 工作面刮板输送机煤流状态识别方法. 工矿自动化. 2023(11): 60-66 .
![]() | |
9. |
张宇. 带式输送机煤流检测系统设计及其应用研究. 现代工业经济和信息化. 2023(12): 91-93 .
![]() |