HAO Hongtao, WANG Kai, DING Wenjie. A dynamic coal quantity detection system for conveyor belt based on ultrasonic array[J]. Journal of Mine Automation,2023,49(4):120-127. DOI: 10.13272/j.issn.1671-251x.2022080048
Citation: HAO Hongtao, WANG Kai, DING Wenjie. A dynamic coal quantity detection system for conveyor belt based on ultrasonic array[J]. Journal of Mine Automation,2023,49(4):120-127. DOI: 10.13272/j.issn.1671-251x.2022080048

A dynamic coal quantity detection system for conveyor belt based on ultrasonic array

More Information
  • Received Date: August 16, 2022
  • Revised Date: March 25, 2023
  • Available Online: April 26, 2023
  • Dynamic coal quantity detection for conveyor belt is the foundation and key to achieving energy consumption optimization measures for multi-stage belt conveyors such as coal flow starting and automatic speed regulation. The existing coal quantity detection methods based on ultrasonic have low precision. Multiple ultrasonic sensors are susceptible to interference. In order to solve the above problems, a dynamic coal quantity detection system for conveyor belts based on ultrasonic array is designed. Using the principle of ultrasonic ranging, the coal material height corresponding to the detection points of each ultrasonic sensor array element is detected in real-time through an ultrasonic array. The cross-section slicing method is used to calculate the total volume of coal material passing through the conveyor belt per unit time. The real-time coal flow and total coal quantity of the conveyor belt are calculated based on the coal material stacking density. In order to reduce the crosstalk of the same frequency acoustic wave and the error caused by the attenuation of ultrasonic waves in harsh underground environments, 10 ultrasonic sensor arrays with different center frequencies are selected and arranged in a 2×5 linear array form. The collected coal height data is compensated through multiple rows of ultrasonic sensors to improve the accuracy of coal height data detection. The analysis results of real-time performance indicate that the ultrasonic array detection speed theoretically meets the coal quantity detection requirements of a belt conveyor with a belt speed of 5 m/s. The experimental results show that the average relative errors of regular material volume detection are 4.99% and 5.16% at belt speeds of 0.125 m/s and 0.170 m/s, respectively. Under simulated actual operating conditions, the average relative error of coal quantity detection is 5.56%. In the low belt speed state, the system has a measurement accuracy of over 94% for regular materials and coal. It basically achieves real-time and accurate detection of the dynamic coal quantity of the conveyor belt, meeting the coal quantity detection requirements of the belt conveyor.
  • [1]
    中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.

    National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021.
    [2]
    王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13 th Five-Year Plan period and future prospects[J]. Coal Science and Technology,2021,49(9):1-8.
    [3]
    刘宝军. 矿井带式输送机能耗优化控制系统研究[D]. 西安: 西安科技大学, 2020.

    LIU Baojun. Research on energy consumption optimization control system of mine belt conveyor[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [4]
    张雅俊,乔铁柱. 基于速度控制的多级带式输送机顺序启动方法[J]. 工矿自动化,2017,43(1):52-55.

    ZHANG Yajun,QIAO Tiezhu. Method of sequence start of multi-level belt conveyors based on speed control[J]. Industry and Mine Automation,2017,43(1):52-55.
    [5]
    HILTERMANN J,LODEWIJKS G,SCHOTT D L,et al. A methodology to predict power savings of troughed belt conveyors by speed control[J]. Particulate Science & Technology,2011,29(1):14-27.
    [6]
    GAN Hong,CHEN Kun,ZHONG Xinghong. Static analysis on the detection system of an electronic belt scale[J]. Applied Mechanics and Materials,2013,345:525-529. DOI: 10.4028/www.scientific.net/AMM.345.525
    [7]
    DJOKORAYONO R, ARFITTARIAH, PRIANTAMA D B, et al. Design of belt conveyor flow scale using gamma radiation technique[C]. Engineering Physics International Conference, 2019.
    [8]
    姜玉峰,张立亚,李标,等. 基于单线激光雷达的带式输送机煤流量检测研究[J]. 煤矿机械,2022,43(8):151-153.

    JIANG Yufeng,ZHANG Liya,LI Biao,et al. Study on coal flow detection of belt conveyor based on single-line LiDAR[J]. Coal Mine Machinery,2022,43(8):151-153.
    [9]
    关丙火. 基于激光扫描的带式输送机瞬时煤量检测方法[J]. 工矿自动化,2018,44(4):20-24.

    GUAN Binghuo. Detection method of instantaneous coal quantity of belt conveyor based on laser scanning[J]. Industry and Mine Automation,2018,44(4):20-24.
    [10]
    胡而已. 基于激光扫描的综放工作面放煤量智能监测技术[J]. 煤炭科学技术,2022,50(2):244-251.

    HU Eryi. Intelligent monitoring technology of coal caving in fully-mechanized caving face based on laser scanning[J]. Coal Science and Technology,2022,50(2):244-251.
    [11]
    徐世昌,程刚,袁敦鹏,等. 基于三维点云的带式输送机跑偏及堆煤监测方法[J]. 工矿自动化,2022,48(9):8-15,24.

    XU Shichang,CHENG Gang,YUAN Dunpeng,et al. Belt conveyor deviation and coal stacking monitoring method based on three-dimensional point cloud[J]. Journal of Mine Automation,2022,48(9):8-15,24.
    [12]
    顾振, 施寅生, 杨春雨. 基于边缘引导双目视觉测量的带式输送机煤量测量系统[C]. 第31届中国过程控制会议, 徐州, 2020: 250.

    GU Zhen, SHI Yinsheng, YANG Chunyu. Coal quantity measuring system of belt conveyor based on edge-guided binocular vision measurement[C]. The 31st Chinese Process Control Conference, Xuzhou, 2020: 250.
    [13]
    华明明, 葛锡聪. 基于图像处理的带式输送机煤流量监测系统[C]. 第30届全国煤矿自动化与信息化学术会议暨第11届中国煤矿信息化与自动化高层论坛, 海口, 2022: 210-218.

    HUA Mingming, GE Xicong. Coal flow monitoring system for belt conveyor based on image processing[C]. The 30th National Coal Mine Automation and Informatization Academic Conference and the 11th China Coal Mine Informatization and Automation High Level Forum, Haikou, 2022: 210-218.
    [14]
    WANG Guimei, LI Xuehui, YANG Lijie. Dynamic coal quantity detection and classification of permanent magnet direct drive belt conveyor based on machine vision and deep learning[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35(11). DOI: 10.1142/S0218001421520170.
    [15]
    寇金成. 基于传感器检测技术的选煤厂煤流协同控制系统设计[J]. 煤矿机电,2021,42(3):71-74.

    KOU Jincheng. Design of coal flow cooperative control system based on sensor detection technology[J]. Colliery Mechanical & Electrical Technology,2021,42(3):71-74.
    [16]
    王宗省,管振栋,张欣,等. 基于图像处理的输送带煤量动态计量研究[J]. 煤炭工程,2020,52(8):138-142.

    WANG Zongsheng,GUAN Zhendong,ZHANG Xin,et al. Dynamic measurement of coal quantity on belt conveyor based on visual processing[J]. Coal Engineering,2020,52(8):138-142.
    [17]
    贺杰,王桂梅,刘杰辉,等. 基于图像处理的皮带机上煤量体积计量[J]. 计量学报,2020,41(12):1516-1520.

    HE Jie,WANG Guimei,LIU Jiehui,et al. Volume measurement of coal volume on belt conveyor based on image processing[J]. Acta Metrologica Sinica,2020,41(12):1516-1520.
    [18]
    陈广立. 超声波煤流传感器在胶带变频调速系统中的应用[J]. 陕西煤炭,2016,35(6):83-86.

    CHEN Guangli. Application of ultrasonic coal flow sensor in variable frequency speed regulation system[J]. Shaanxi Coal,2016,35(6):83-86.
    [19]
    杨栋,江虹,罗颖,等. 基于FPGA的多路传感信号采集系统设计[J]. 仪表技术与传感器,2022(6):75-79.

    YANG Dong,JIANG Hong,LUO Ying,et al. Design of multi-channel sensor signal acquisition system based on FPGA[J]. Instrument Technique and Sensor,2022(6):75-79.
    [20]
    黄平,杨理践,高松巍,等. 基于STM32的多通道探头阵列低频电磁检测系统研究[J]. 仪表技术与传感器,2021(9):38-42,53.

    HUANG Ping,YANG Lijian,GAO Songwei,et al. Research on low-frequency electromagnetic detection system with multi-channel probe array based on STM32[J]. Instrument Technique and Sensor,2021(9):38-42,53.
    [21]
    王甲福,常海天,刘志远. 基于Qt的非接触测量系统软件设计[J]. 长春工业大学学报,2018,39(1):51-55.

    WANG Jiafu,CHANG Haitian,LIU Zhiyuan. Software design of a non-contact measurement system based on Qt[J]. Journal of Changchun University of Technology,2018,39(1):51-55.
  • Related Articles

    [1]SONG Tao, WANG Jianwen, WU Fengliang, ZHANG Guoqun, CHEN Fei, FENG Xiong, LI Longqing. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation, 2022, 48(4): 114-120, 141. DOI: 10.13272/j.issn.1671-251x.2021090073
    [2]MA Jian, LI Zefang, ZHANG Desheng. Design of pipeline flow meter based on ultrasonic time difference method[J]. Journal of Mine Automation, 2021, 47(2): 93-97. DOI: 10.13272/j.issn.1671-251x.2021010022
    [3]ZHANG Li. A multi points ultrasonic detection method for material flow of belt conveyor[J]. Journal of Mine Automation, 2017, 43(5): 62-65. DOI: 10.13272/j.issn.1671-251x.2017.05.015
    [4]CHEN Xiangyua. Design of multipoint coal flow monitoring system of belt conveyor based on ultrasonic[J]. Journal of Mine Automation, 2017, 43(2): 75-78. DOI: 10.13272/j.issn.1671-251x.2017.02.016
    [5]KONG Weizheng, JIN Baoquan, WANG Yu, WANG Dong, ZHANG Hongjuan, GAO Yan. Design of mine-used intrinsic safety ultrasonic ranging circuit system[J]. Journal of Mine Automation, 2016, 42(10): 65-69. DOI: 10.13272/j.issn.1671-251x.2016.10.015
    [6]LI Zongwei, LI Qiwei, WEN Liang, MENG Qingyong. Underground joint localization method based on electromagnetic wave and ultrasonic[J]. Journal of Mine Automation, 2016, 42(7): 30-33. DOI: 10.13272/j.issn.1671-251x.2016.07.008
    [7]WANG Rong-rong, YANG Hai-zhong. Research of Ultrasonic Ranging Error Compensation Algorithm[J]. Journal of Mine Automation, 2012, 38(12): 62-65.
    [8]YUAN Feng-pei, YAN Xiang-hong, LIU Jie. Design of Measuring System of 2-sides Deformation of Mine Roadway Based on Ultrasonic Distance Measurement[J]. Journal of Mine Automation, 2011, 37(11): 49-53.
    [9]MI Lan, JI Mei, MENG Lin-shan, GU Lin-zhu. Design of Portable Ultrasonic Ranger Based on MSP430F149[J]. Journal of Mine Automation, 2011, 37(6): 122-124.
    [10]Zhong Li-yu. Research of Mine-used Ultrasonic Wave Level Meter with Large Measuring Range[J]. Journal of Mine Automation, 2010, 36(3): 110-112.
  • Cited by

    Periodical cited type(9)

    1. 范巧艳, 董洁, 郭攀. 基于超分辨率深度图像修复的输送带煤流检测算法. 金属矿山. 2025(07)
    2. 葛世荣. 刮板输送机技术发展历程(四)——智能化成套装备. 中国煤炭. 2024(05): 1-12 .
    3. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
    4. 赵鑫,乔铁柱,冀杰,刘亮亮,武宏旺. 基于RGB-D视觉信息融合的带式输送机煤流量检测方法研究. 煤炭技术. 2024(07): 225-229 .
    5. 王涛. 基于改进MobileNet的带式输送机煤量检测研究. 能源与环保. 2024(07): 198-202 .
    6. 尹瑞,张冬雪,倪强. 基于数组的刮板输送机运载模型及煤量计算算法研究. 工矿自动化. 2024(08): 84-90 . 本站查看
    7. 牛亚凯. 基于超声波传感器的输送机煤流控制方法研究. 机械管理开发. 2024(12): 221-223 .
    8. 吴江伟,南柄飞. 工作面刮板输送机煤流状态识别方法. 工矿自动化. 2023(11): 60-66 . 本站查看
    9. 张宇. 带式输送机煤流检测系统设计及其应用研究. 现代工业经济和信息化. 2023(12): 91-93 .

    Other cited types(2)

Catalog

    DING Wenjie

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (288) PDF downloads (31) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return