Citation: | ZHENG Ran, ZHANG Fukai, YUAN Guan, et al. Method for counting coal mine drill pipes based on YOLOv11_OBB[J]. Journal of Mine Automation,2025,51(5):72-79, 95. DOI: 10.13272/j.issn.1671-251x.2025020056 |
To address the issues of poor generalization in downhole drilling image recognition and inaccurate drill pipe counting in coal mines, this study collected and annotated a dedicated dataset CMDPC_OBB, and proposed a method for drill pipe counting based on YOLOv11_OBB. The method consisted of two components: the YOLOv11_OBB-based drilling image recognition model and a scene-adaptive drill pipe counting algorithm. YOLOv11_OBB used rotated bounding boxes to accurately capture drilling images with inclined angles. By applying L2 regularization to improve the neck network of YOLOv11, weight fluctuation interference in feature fusion was reduced, ensuring more stable model training. The scene-adaptive counting algorithm tracked the motion trajectory between target drill pipes and key points at the drill rig's tail while employing multi-condition peak judgment to achieve automatic counting, thereby minimizing the impact of irrelevant pipes on accuracy. In addition, the image features learned by YOLOv11_OBB served as latent knowledge to guide the counting logic. Experimental results on the CMDPC_OBB dataset show that YOLOv11_OBB achieves an image recognition accuracy of 93.5%, outperforming YOLOv5L_OBB and YOLOv8L_OBB by 8.2% and 3.0%, respectively. The counting algorithm achieves an accuracy of 97.96%, with a model recognition speed of 34 FPS and a counting speed of 79 FPS, meeting real-time requirements.
[1] |
张增辉,张海峰,朱兴林. 煤矿井下打钻视频管理系统研究与设计[J]. 煤矿机械,2024,45(7):184-186.
ZHANG Zenghui,ZHANG Haifeng,ZHU Xinglin. Research and design of video management system for underground drilling in coal mine[J]. Coal Mine Machinery,2024,45(7):184-186.
|
[2] |
彭业勋. 煤矿井下钻杆计数方法研究[D]. 西安:西安科技大学,2019.
PENG Yexun. Research on counting method of drill pipe in coal mine[D]. Xi'an:Xi'an University of Science and Technology,2019.
|
[3] |
梁运培,郑梦浩,李全贵,等. 我国煤与瓦斯突出预测与预警研究现状[J]. 煤炭学报,2023,48(8):2976-2994.
LIANG Yunpei,ZHENG Menghao,LI Quangui,et al. A review on prediction and early warning methods of coal and gas outburst[J]. Journal of China Coal Society,2023,48(8):2976-2994.
|
[4] |
REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. [2025-01-10]. https://arxiv.org/abs/1804.02767v1.
|
[5] |
姜媛媛,刘宋波. 基于改进YOLOv8n的煤矿井下钻杆计数方法[J]. 工矿自动化,2024,50(8):112-119.
JIANG Yuanyuan,LIU Songbo. A coal mine underground drill pipes counting method based on improved YOLOv8n[J]. Journal of Mine Automation,2024,50(8):112-119.
|
[6] |
方杰,李振璧,夏亮. 基于ECO−HC的钻杆计数方法[J]. 煤炭技术,2021,40(11):186-189.
FANG Jie,LI Zhenbi,XIA Liang. Drill pipe counting method based on ECO-HC[J]. Coal Technology,2021,40(11):186-189.
|
[7] |
高瑞,郝乐,刘宝,等. 基于改进ResNet网络的井下钻杆计数方法[J]. 工矿自动化,2020,46(10):32-37.
GAO Rui,HAO Le,LIU Bao,et al. Research on underground drill pipe counting method based on improved ResNet network[J]. Industry and Mine Automation,2020,46(10):32-37.
|
[8] |
冉庆庆,董立红,温乃宁. 改进YOLOv8的煤矿井下低照度图像钻杆计数方法[J/OL]. 电子测量技术:1-12[2025-05-08]. http://kns.cnki.net/kcms/detail/11.2175.TN.20250425.1132.018.html.
RAN Qingqing,DONG Lihong,WEN Naining. Improved YOLOv8 method for counting drill pipe in low illumination image of coal mine underground[J/OL]. Electronic Measurement Technology:1-12[2025-05-08]. http://kns.cnki.net/ kcms/detail/11.2175.TN.20250425.1132.018.html.
|
[9] |
王旭,吴艳霞,张雪,等. 计算机视觉下的旋转目标检测研究综述[J]. 计算机科学,2023,50(8):79-92. DOI: 10.11896/jsjkx.221000148
WANG Xu,WU Yanxia,ZHANG Xue,et al. Survey of rotating object detection research in computer vision[J]. Computer Science,2023,50(8):79-92. DOI: 10.11896/jsjkx.221000148
|
[10] |
SHI Pengfei,ZHAO Zhongxin,FAN Xinnan,et al. Remote sensing image object detection based on angle classification[J]. IEEE Access,2021,9:118696-118707. DOI: 10.1109/ACCESS.2021.3107358
|
[11] |
张富凯,赵硕,张强,等. 基于旋转目标检测与显著性峰值推理的煤矿井下钻杆计数方法[J/OL]. 煤炭学报:1-15[2025-05-08]. https://doi.org/10.13225/j.cnki.jccs.2024.1328.
ZHANG Fukai,ZHAO Shuo,ZHANG Qiang,et al. Coal mine drill pipe counting method based on oriented object detection and significant peak inference[J/OL]. Journal of China Coal Society:1-15[2025-05-08]. https://doi.org/10.13225/j.cnki.jccs.2024.1328.
|
[12] |
张睿,李允臣,王家宝,等. 多尺度特征融合的双模态目标检测方法[J]. 计算机工程与应用,2024,60(17):233-242.
ZHANG Rui,LI Yunchen,WANG Jiabao,et al. Multiscale feature fusion approach for dual-modal object detection[J]. Computer Engineering and Applications,2024,60(17):233-242.
|
[13] |
LUO Yi,SHAO Feng,MU Baoyang,et al. Dynamic weighted fusion and progressive refinement network for visible-depth-thermal salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology,2024,34(11):10662-10677. DOI: 10.1109/TCSVT.2024.3414170
|
[14] |
沈记全,陈相均,翟海霞. 基于改进边界框回归损失的YOLOv3检测算法[J]. 计算机工程,2022,48(3):236-243.
SHEN Jiquan,CHEN Xiangjun,ZHAI Haixia. YOLOv3 detection algorithm based on the improved bounding box regression loss[J]. Computer Engineering,2022,48(3):236-243.
|
[15] |
张震,彭景昊,田鸿朋,等. 考虑数据分布损失的图像分割[J]. 计算机工程与应用,2024,60(19):242-249. DOI: 10.3778/j.issn.1002-8331.2307-0076
ZHANG Zhen,PENG Jinghao,TIAN Hongpeng,et al. Design of loss function considering data distribution[J]. Computer Engineering and Applications,2024,60(19):242-249. DOI: 10.3778/j.issn.1002-8331.2307-0076
|
[16] |
朱旭东,熊赟. 基于样本分布损失的图像多标签分类研究[J]. 计算机科学,2022,49(6):210-216. DOI: 10.11896/jsjkx.210300267
ZHU Xudong,XIONG Yun. Study on multi-label image classification based on sample distribution loss[J]. Computer Science,2022,49(6):210-216. DOI: 10.11896/jsjkx.210300267
|
[17] |
张富凯,孙一冉,武旭峰,等. 基于深度学习的煤矿钻杆实时计数方法[J/OL]. 煤炭科学技术:1-12[2025-02-21]. https://kns.cnki.net/kcms/detail/11.2402.TD.20240617.1542.006.html.
ZHANG Fukai,SUN Yiran,WU Xufeng,et al. Real time counting method for coal mine drill pipes based on deep learning[J/OL]. Coal Science and Technology:1-12[2025-02-21]. https://kns.cnki.net/kcms/detail/11.2402.TD.20240617.1542.006.html.
|
[18] |
BUSLAEV A,IGLOVIKOV V I,KHVEDCHENYA E,et al. Albumentations:fast and flexible image augmentations[J]. Information,2020,11(2). DOI: 10.3390/info11020125.
|
[19] |
唐晓彬,沈童. 深度学习框架发展综述[J]. 调研世界,2023(4):83-88.
TANG Xiaobin,SHEN Tong. Review of development of deep learning framework[J]. The World of Survey and Research,2023(4):83-88.
|
[20] |
张少康,王超,孙芹东. 基于多类别特征融合的水声目标噪声识别分类技术[J]. 西北工业大学学报,2020,38(2):366-376. DOI: 10.3969/j.issn.1000-2758.2020.02.018
ZHANG Shaokang,WANG Chao,SUN Qindong. Underwater target noise recognition and classification technology based on multi-classes feature fusion[J]. Journal of Northwestern Polytechnical University,2020,38(2):366-376. DOI: 10.3969/j.issn.1000-2758.2020.02.018
|
[21] |
戴得恩,朱瑞飞,陈长征,等. 基于改进Yolov5l的航空小目标检测算法[J]. 计算机工程与设计,2023,44(9):2610-2618.
DAI De'en,ZHU Ruifei,CHEN Changzheng,et al. Aerial small target detection method based on improved Yolov5l[J]. Computer Engineering and Design,2023,44(9):2610-2618.
|
[22] |
AHMED A,IMRAN A S,MANAF A,et al. Enhancing wrist abnormality detection with YOLO:analysis of state-of-the-art single-stage detection models[J]. Biomedical Signal Processing and Control,2024,93. DOI: 10.1016/j.bspc.2024.106144.
|
[23] |
韩慧妍,张秀权,况立群,等. 基于YOLOv8L遥感图像旋转目标检测[J]. 激光与红外,2024,54(9):1462-1468. DOI: 10.3969/j.issn.1001-5078.2024.09.018
HAN Huiyan,ZHANG Xiuquan,KUANG Liqun,et al. Rotating object detection of remote sensing image based on YOLOv8L[J]. Laser & Infrared,2024,54(9):1462-1468. DOI: 10.3969/j.issn.1001-5078.2024.09.018
|
[24] |
安徽工程大学. 基于改进YOLOv10网络的道路缺陷检测方法:CN202411303739. X[P]. 2025-01-07.
Anhui Polytechnic University. Road defect detection method based on improved YOLOv10 network:CN202411303739. X[P]. 2025-01-07.
|
[1] | ZHU Yongjun, CAI Guangqi, HAN Jin, MIAO Yanzi, MA Xiaoping, JIAO Wenhua. Small object detection in complex open-pit mine backgrounds based on improved YOLOv11[J]. Journal of Mine Automation, 2025, 51(4): 93-99. DOI: 10.13272/j.issn.1671-251x.2025020018 |
[2] | GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011 |
[3] | Research and application of deep learning based channel wave strike fault identification prediction[J]. Journal of Mine Automation. |
[4] | ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043 |
[5] | CHEN Tengjie, LI Yong'an, ZHANG Zhihao, LIN Bin. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation, 2024, 50(8): 91-98. DOI: 10.13272/j.issn.1671-251x.2024070043 |
[6] | CAO Shuai, DONG Lihong, DENG Fan, GAO Feng. A small object detection method for coal mine underground scene based on YOLOv7-SE[J]. Journal of Mine Automation, 2024, 50(3): 35-41. DOI: 10.13272/j.issn.1671-251x.2023090088 |
[7] | ZHANG Lei, WANG Haosheng, LEI Weiqiang, WANG Bin, LIN Jiangong. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation, 2023, 49(4): 106-112. DOI: 10.13272/j.issn.1671-251x.2022080043 |
[8] | ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, ZHANG Ao, JI Liang. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation, 2022, 48(11): 39-44. DOI: 10.13272/j.issn.1671-251x.2022060052 |
[9] | ZHANG Xuhui, YAN Jianxing, ZHANG Chao, WAN Jicheng, WANG Lixin, HU Chengjun, WANG Li, WANG Dong. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation, 2022, 48(6): 77-86, 117. DOI: 10.13272/j.issn.1671-251x.17915 |
[10] | ZHOU Yujie, XU Shanyong, HUANG Yourui, TANG Chaoli. Conveyor belt damage detection method based on improved YOLOv4[J]. Journal of Mine Automation, 2021, 47(11): 61-65. DOI: 10.13272/j.issn.1671-251x.17843 |