ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39-44. DOI: 10.13272/j.issn.1671-251x.2022060052
Citation: ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39-44. DOI: 10.13272/j.issn.1671-251x.2022060052

Coal and gangue recognition research based on improved YOLOv5

More Information
  • Received Date: June 13, 2022
  • Revised Date: November 05, 2022
  • Available Online: September 06, 2022
  • The existing deep learning-based coal and gangue recognition methods are prone to false detection and missed detection when applied to underground complex environments. The recognition precision of small target coal and gangue is low. In order to solve this problem, an improved YOLOv5 model is proposed, and coal and gangue recognition is realized based on that model. Data enhancement is carried out on the collected coal and gangue data to enrich the data set and improve the data utilization rate. The atrous convolution and residual block are introduced into the spatial pyramid pooling (SPP) module to obtain the residual ASPP module. On the premise of not losing image information, the convolution output receptive field can be increased to enhance the extraction of deep features from the model. The AdaBelief optimization algorithm is used to replace the original Adam optimization algorithm of YOLOv5 to improve the convergence speed and recognition precision of the model. The experimental results show that the AdaBelief optimization algorithm and residual ASPP module can effectively improve the precision, recall rate and mean average precision (mAP) of the YOLOv5 model. The mAP of the improved YOLOv5 model reaches 94.43%, which is 2.27% higher than that of original YOLOv5 model. The frame rate is reduced by 0.03 frames/s. The performance of the improved YOLOv5 model is superior to SSD, Faster R-CNN, YOLOv3, YOLOv4 and other mainstream target detection models. In extremely dark environments, the improved YOLOv5 model can also accurately delineate the target boundary, and the recognition effect is better than other improved YOLOv5 models.
  • [1]
    曾伟,熊俊杰,赵伟哲,等. “双碳”目标下智慧社区新能源消纳的政策与技术研究[J]. 价格理论与实践,2022(4):71-75,205.

    ZENG Wei,XIONG Junjie,ZHAO Weizhe,et al. Policy and technology research on new energy consumption in smart communities under the carbon peaking and carbon neutrality strategy[J]. Price:Theory & Practice,2022(4):71-75,205.
    [2]
    钱鸣高,缪协兴,许家林. 资源与环境协调(绿色)开采[J]. 煤炭学报,2007,33(1):1-7. DOI: 10.3321/j.issn:0253-9993.2007.01.001

    QIAN Minggao,MIAO Xiexing,XU Jialin. Green mining of coal resources harmonizing with environment[J]. Journal of China Coal Society,2007,33(1):1-7. DOI: 10.3321/j.issn:0253-9993.2007.01.001
    [3]
    曹现刚,薛祯也. 基于迁移学习的GoogLenet煤矸石图像识别[J]. 软件导刊,2019,18(12):183-186.

    CAO Xiangang,XUE Zhenye. Coal gangue identification by using transfer learning in GoogLenet[J]. Software Guide,2019,18(12):183-186.
    [4]
    PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9):1-11.
    [5]
    杜京义,史志芒,郝乐,等. 轻量化煤矸目标检测方法研究[J]. 工矿自动化,2021,47(11):119-125.

    DU Jingyi,SHI Zhimang,HAO Le,et al. Research on lightweight coal and gangue target detection method[J]. Industry and Mine Automation,2021,47(11):119-125.
    [6]
    汝洪芳,张冬冬. YOLOv5检测煤矸石的改进方法[J]. 黑龙江科技大学学报,2021,31(6):818-823. DOI: 10.3969/j.issn.2095-7262.2021.06.023

    RU Hongfang,ZHANG Dongdong. Coal gangue detection method based on improved YOLOv5[J]. Journal of Heilongjiang University of Science and Technology,2021,31(6):818-823. DOI: 10.3969/j.issn.2095-7262.2021.06.023
    [7]
    桂方俊,李尧. 基于CBA−YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128-133.

    GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133.
    [8]
    沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.

    SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
    [9]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1506.02640.
    [10]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-05-25]. https://arxiv.org/abs/2004.10934.
    [11]
    HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. DOI: 10.1109/TPAMI.2015.2389824
    [12]
    林清平,张麒麟,肖蕾. 采用改进YOLOv5网络的遥感图像目标识别方法[J]. 空军预警学院学报,2021,35(2):117-120.

    LIN Qingping,ZHANG Qilin,XIAO Lei. Method of remote sensing image target recognition based on improved YOLOv5 network[J]. Journal of Air Force Early Warning Academy,2021,35(2):117-120.
    [13]
    CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. DOI: 10.1109/TPAMI.2017.2699184
    [14]
    KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1412.6980.
    [15]
    ROBBINS H, MONRO S. A stochastic approximation method[M]. New York: Springer, 1985.
    [16]
    YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1511.07122.
  • Related Articles

    [1]ZHAO Baofu. Optimization and application of coal pillar width for gob-side roadway based on Polar Lights Optimizer algorithm[J]. Journal of Mine Automation, 2025, 51(7): 164-170. DOI: 10.13272/j.issn.1671-251x.2025040071
    [2]SHI Can, TAN Ziliang, LEI Chao, LI Yunwang, XU Hanfei, HU Qiaowei, JI Zhendong. Optimization of shotcrete manipulator motion trajectory based on AIWCPSO algorithm[J]. Journal of Mine Automation, 2024, 50(12): 155-165. DOI: 10.13272/j.issn.1671-251x.2024080094
    [3]ZHANG Xuhui, YAN Jianxing, ZHANG Chao, WAN Jicheng, WANG Lixin, HU Chengjun, WANG Li, WANG Dong. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation, 2022, 48(6): 77-86, 117. DOI: 10.13272/j.issn.1671-251x.17915
    [4]ZUO Chunzi, WANG Zheng, ZHANG Ke, PAN Hongguang. Coal dust image segmentation method based on improved DeepLabV3+[J]. Journal of Mine Automation, 2022, 48(5): 52-57, 64. DOI: 10.13272/j.issn.1671-251x.2021120086
    [5]MEN Fei, JIANG Xi. Improved gray wolf optimization algorithm for solving low-carbon transportation scheduling problem in open-pit mines[J]. Journal of Mine Automation, 2020, 46(12): 90-94. DOI: 10.13272/j.issn.1671-251x.2020070049
    [6]WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
    [7]SONG Pinggang, JIANG Lang, LI Yunfeng, DUAN Chengting. Research of optimized sorting algorithm of capacitor voltage for MMC[J]. Journal of Mine Automation, 2014, 40(6): 64-67. DOI: 10.13272/j.issn.1671-251x.2014.06.016
    [8]LV Ting-ting, MA Xiao-ping, CHEN Li. Simulation of PID control of jig discharging system optimized by genetic algorithm[J]. Journal of Mine Automation, 2013, 39(1): 67-70.
    [9]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
    [10]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
  • Cited by

    Periodical cited type(14)

    1. 刘天畅, 张守亮, 蒙丹, 吴任翔. 基于改进YOLOv8网络的高精度仪器仪表示值识别算法研究. 铁道技术监督. 2025(06)
    2. 杨辉,李响,段兴宇. 基于YOLACT高温高粉尘钢包液面检测方法的研究. 冶金与材料. 2025(04): 101-103 .
    3. 袁永,秦正寒,夏永琪,武让,李立宝,李勇. 基于改进U-Net的煤矸图像分割模型与放煤控制技术. 煤炭学报. 2025(05): 2722-2738 .
    4. 程刚,陈杰,潘泽烨,魏溢凡,陈森森. 基于水传热和红外热成像的煤矸识别方法. 工矿自动化. 2024(01): 66-71+137 . 本站查看
    5. 郑松涛,孙志鹏,陶虹京. 基于GSP-YOLO煤矸石检测算法研究. 山西焦煤科技. 2024(02): 6-10+14 .
    6. 燕碧娟,王凯民,郭鹏程,郑馨旭,董浩,刘勇. 基于YOLOv5s-FSW模型的选煤厂煤矸检测研究. 工矿自动化. 2024(05): 36-43+66 . 本站查看
    7. 边铁山. 基于SE-YOLOv5模型皮带异物检测算法研究. 中国矿业. 2024(07): 127-134 .
    8. 韦小龙,王方田,何东升,刘超,徐大连. 基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型. 煤炭科学技术. 2024(S1): 238-248 .
    9. 高琳,于鹏伟,董红娟,梁朝辉,张志远. 基于机器视觉的煤矸石识别方法综述. 科学技术与工程. 2024(26): 11039-11049 .
    10. 汤博宇,魏小玉,王彦生,李家源,孟琳. 基于改进YOLOv5的驾驶员玩手机行为检测. 计算机与数字工程. 2024(11): 3404-3409+3445 .
    11. 孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 煤矿井下残缺信息的多目标检测方法研究. 煤炭科学技术. 2024(S2): 211-220 .
    12. 郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 . 本站查看
    13. 张继成,侯郁硕,郑萍,夏士兴. 低数据集下基于ASPP-YOLO v5的苋菜识别方法研究. 农业机械学报. 2023(S2): 223-228 .
    14. 吕昌,尹和,邵叶秦. 基于结构重参数化的目标检测模型. 电子测量技术. 2023(18): 114-121 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (493) PDF downloads (96) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return