Citation: | ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39-44. DOI: 10.13272/j.issn.1671-251x.2022060052 |
[1] |
曾伟,熊俊杰,赵伟哲,等. “双碳”目标下智慧社区新能源消纳的政策与技术研究[J]. 价格理论与实践,2022(4):71-75,205.
ZENG Wei,XIONG Junjie,ZHAO Weizhe,et al. Policy and technology research on new energy consumption in smart communities under the carbon peaking and carbon neutrality strategy[J]. Price:Theory & Practice,2022(4):71-75,205.
|
[2] |
钱鸣高,缪协兴,许家林. 资源与环境协调(绿色)开采[J]. 煤炭学报,2007,33(1):1-7. DOI: 10.3321/j.issn:0253-9993.2007.01.001
QIAN Minggao,MIAO Xiexing,XU Jialin. Green mining of coal resources harmonizing with environment[J]. Journal of China Coal Society,2007,33(1):1-7. DOI: 10.3321/j.issn:0253-9993.2007.01.001
|
[3] |
曹现刚,薛祯也. 基于迁移学习的GoogLenet煤矸石图像识别[J]. 软件导刊,2019,18(12):183-186.
CAO Xiangang,XUE Zhenye. Coal gangue identification by using transfer learning in GoogLenet[J]. Software Guide,2019,18(12):183-186.
|
[4] |
PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9):1-11.
|
[5] |
杜京义,史志芒,郝乐,等. 轻量化煤矸目标检测方法研究[J]. 工矿自动化,2021,47(11):119-125.
DU Jingyi,SHI Zhimang,HAO Le,et al. Research on lightweight coal and gangue target detection method[J]. Industry and Mine Automation,2021,47(11):119-125.
|
[6] |
汝洪芳,张冬冬. YOLOv5检测煤矸石的改进方法[J]. 黑龙江科技大学学报,2021,31(6):818-823. DOI: 10.3969/j.issn.2095-7262.2021.06.023
RU Hongfang,ZHANG Dongdong. Coal gangue detection method based on improved YOLOv5[J]. Journal of Heilongjiang University of Science and Technology,2021,31(6):818-823. DOI: 10.3969/j.issn.2095-7262.2021.06.023
|
[7] |
桂方俊,李尧. 基于CBA−YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128-133.
GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133.
|
[8] |
沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.
SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1506.02640.
|
[10] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-05-25]. https://arxiv.org/abs/2004.10934.
|
[11] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. DOI: 10.1109/TPAMI.2015.2389824
|
[12] |
林清平,张麒麟,肖蕾. 采用改进YOLOv5网络的遥感图像目标识别方法[J]. 空军预警学院学报,2021,35(2):117-120.
LIN Qingping,ZHANG Qilin,XIAO Lei. Method of remote sensing image target recognition based on improved YOLOv5 network[J]. Journal of Air Force Early Warning Academy,2021,35(2):117-120.
|
[13] |
CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. DOI: 10.1109/TPAMI.2017.2699184
|
[14] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1412.6980.
|
[15] |
ROBBINS H, MONRO S. A stochastic approximation method[M]. New York: Springer, 1985.
|
[16] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1511.07122.
|
1. |
刘天畅, 张守亮, 蒙丹, 吴任翔. 基于改进YOLOv8网络的高精度仪器仪表示值识别算法研究. 铁道技术监督. 2025(06)
![]() | |
2. |
杨辉,李响,段兴宇. 基于YOLACT高温高粉尘钢包液面检测方法的研究. 冶金与材料. 2025(04): 101-103 .
![]() | |
3. |
袁永,秦正寒,夏永琪,武让,李立宝,李勇. 基于改进U-Net的煤矸图像分割模型与放煤控制技术. 煤炭学报. 2025(05): 2722-2738 .
![]() | |
4. |
程刚,陈杰,潘泽烨,魏溢凡,陈森森. 基于水传热和红外热成像的煤矸识别方法. 工矿自动化. 2024(01): 66-71+137 .
![]() | |
5. |
郑松涛,孙志鹏,陶虹京. 基于GSP-YOLO煤矸石检测算法研究. 山西焦煤科技. 2024(02): 6-10+14 .
![]() | |
6. |
燕碧娟,王凯民,郭鹏程,郑馨旭,董浩,刘勇. 基于YOLOv5s-FSW模型的选煤厂煤矸检测研究. 工矿自动化. 2024(05): 36-43+66 .
![]() | |
7. |
边铁山. 基于SE-YOLOv5模型皮带异物检测算法研究. 中国矿业. 2024(07): 127-134 .
![]() | |
8. |
韦小龙,王方田,何东升,刘超,徐大连. 基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型. 煤炭科学技术. 2024(S1): 238-248 .
![]() | |
9. |
高琳,于鹏伟,董红娟,梁朝辉,张志远. 基于机器视觉的煤矸石识别方法综述. 科学技术与工程. 2024(26): 11039-11049 .
![]() | |
10. |
汤博宇,魏小玉,王彦生,李家源,孟琳. 基于改进YOLOv5的驾驶员玩手机行为检测. 计算机与数字工程. 2024(11): 3404-3409+3445 .
![]() | |
11. |
孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 煤矿井下残缺信息的多目标检测方法研究. 煤炭科学技术. 2024(S2): 211-220 .
![]() | |
12. |
郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 .
![]() | |
13. |
张继成,侯郁硕,郑萍,夏士兴. 低数据集下基于ASPP-YOLO v5的苋菜识别方法研究. 农业机械学报. 2023(S2): 223-228 .
![]() | |
14. |
吕昌,尹和,邵叶秦. 基于结构重参数化的目标检测模型. 电子测量技术. 2023(18): 114-121 .
![]() |