Citation: | MAO Qinghua, GUO Wenjin, ZHAI Jiao, et al. Research on video AI recognition technology for abnormal state of coal mine belt conveyors[J]. Journal of Mine Automation,2023,49(9):36-46. DOI: 10.13272/j.issn.1671-251x.18134 |
[1] |
王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.
WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
|
[2] |
李鑫. 矿用带式输送机巡检机器人研究及行走机构设计[D]. 太原: 太原理工大学, 2022.
LI Xin. Research on inspection robot of mine belt conveyor and design of its walking mechanism[D]. Taiyuan: Taiyuan University of Science and Technology, 2022.
|
[3] |
刘建思,尹丽菊,潘金凤,等. 基于参数化对数图像处理模型的光照不均匀图像的边缘检测算法[J]. 激光与光电子学进展,2021,58(22):140-149.
LIU Jiansi,YIN Liju,PAN Jinfeng,et al. Edge detection algorithm for unevenly illuminated images based on parameterized logarithmic image processing model[J]. Laser & Optoelectronics Progress,2021,58(22):140-149.
|
[4] |
KUSNIK D, SMOLKA B. On the robust technique of mixed Gaussian and impulsive noise reduction in color digital images[C]. International Conference on Information, Intelligence, Systems and Applications, Corfu, 2015: 940-945.
|
[5] |
王锴,曾祥进,黎新,等. 输送带跑偏检测方法研究[J]. 工矿自动化,2023,49(3):23-30,52.
WANG Kai,ZENG Xiangjin,LI Xin,et al. Research on conveyor belt deviation detection method[J]. Journal of Mine Automation,2023,49(3):23-30,52.
|
[6] |
王星. 基于视觉的煤矿井下带式输送机异常状态监测方法研究[D]. 太原: 太原科技大学, 2017.
WANG Xing. Research on monitoring method for abnormal state of coal mine belt conveyor based on vision[D]. Taiyuan: Taiyuan University of Science and Technology, 2017.
|
[7] |
李占利,赵文博. 基于视觉计算的胶带运输机跑偏监测[J]. 煤矿安全,2014,45(5):118-121.
LI Zhanli,ZHAO Wenbo. Deviation monitoring of coal belt conveyor based on visual computing[J]. Safety in Coal Mines,2014,45(5):118-121.
|
[8] |
ZHANG Mengchao,SHI Hao,YU Yan,et al. A computer vision based conveyor deviation detection system[J]. Applied Sciences,2020,10(7):2402. DOI: 10.3390/app10072402.
|
[9] |
MARIA S,WIOLETTA K,PAWEL S,et al. Procedures of detecting damage to a conveyor belt with use of an inspection legged robot for deep mine infrastructure[J]. Minerals,2021,11(10):1040. DOI: 10.3390/min11101040.
|
[10] |
王磊,张磊,董妍,等. 基于FPGA的输送带跑偏检测系统设计[J]. 煤矿机械,2019,40(7):27-30.
WANG Lei,ZHANG Lei,DONG Yan,et al. Design of conveyor belt deviation detecting system based on FPGA[J]. Coal Mine Machinery,2019,40(7):27-30.
|
[11] |
LIU Yi, MIAO Changyun, LI Xiangguo, et al. Research on deviation detection of belt conveyor based on inspection robot and deep learning[J]. Complexity, 2021, 2021. DOI: 10.1155/2021/3734560.
|
[12] |
林俊,党伟超,潘理虎,等. 基于计算机视觉的井下输送带跑偏检测方法[J]. 煤矿机械,2019,40(10):169-171.
LIN Jun,DANG Weichao,PAN Lihu,et al. Deviation monitoring method of underground conveyor belt based on computer vision[J]. Coal Mine Machinery,2019,40(10):169-171.
|
[13] |
韩涛,黄友锐,张立志,等. 基于图像识别的带式输送机输煤量和跑偏检测方法[J]. 工矿自动化,2020,46(4):17-22.
HAN Tao,HUANG Yourui,ZHANG Lizhi,et al. Detection method of coal quantity and deviation of belt conveyor based on image recognition[J]. Industry and Mine Automation,2020,46(4):17-22.
|
[14] |
ZENG Chan,ZHENG Junfeng,LI Jiangyun. Real-time conveyor belt deviation detection algorithm based on multi-scale feature fusion network[J]. Algorithms,2019,12(10):205. DOI: 10.3390/a12100205.
|
[15] |
ZHANG Mengchao, JIANG Kai, CAO Yueshuai, et al. A deep learning-based method for deviation status detection in intelligent conveyor belt system[J]. Journal of Cleaner Production, 2022, 363. DOI: 10.1016/j.jclepro.2022.132575.
|
[16] |
杨志方, 张立亚, 郝博南, 等. 基于双流融合网络的运输机皮带跑偏检测方法[J/OL]. 煤炭科学技术: 1-10[2023-08-04]. https://doi.org/10.13199/j.cnki.cst.2023-0215.
YANG Zhifang, ZHANG Liya, HAO Bonan, et al. Conveyor belt deviation detection method based on dual flow network[J/OL]. Coal Science and Technology: 1-10[2023-08-04]. https://doi.org/10.13199/j.cnki.cst.2023-0215.
|
[17] |
张瑞,汤心溢,李争. 低照度短波红外图像增强算法[J]. 红外与毫米波学报,2020,39(6):818-824.
ZHANG Rui,TANG Xinyi,LI Zheng. Research on low illumination shortwave infrared image enhancement algorithm[J]. Journal of Infrared and Millimeter Waves,2020,39(6):818-824.
|
[18] |
PATHAK S, SEJWAR V. Optimized noisy image segmentation using genetic algorithm[C]. International Conference on Intelligent Computing and Control Systems, Madurai, 2017: 1311-1316.
|
[19] |
SZREK J,WODECKI J,BAEJ R,et al. An inspection robot for belt conveyor maintenance in underground mine-infrared thermography for overheated idlers detection[J]. Applied Sciences,2020,10(14):4984. DOI: 10.3390/app10144984.
|
[20] |
SIAMI M,BARSZCZ T,WODECKI J,et al. Design of an infrared image processing pipeline for robotic inspection of conveyor systems in opencast mining sites[J]. Energies,2022,15(18):6771. DOI: 10.3390/en15186771.
|
[21] |
SZURGACZ D,ZHIRONKIN S,VTH S,et al. Thermal imaging study to determine the operational condition of a conveyor belt drive system structure[J]. Energies,2021,14(11):3258. DOI: 10.3390/en14113258.
|
[22] |
马宏伟,杨文娟,张旭辉. 基于红外热像的带式输送机监测与预警系统[J]. 激光与红外,2017,47(4):448-452.
MA Hongwei,YANG Wenjuan,ZHANG Xuhui. Monitoring and warning system of belt conveyor based on infrared thermography[J]. Laser & Infrared,2017,47(4):448-452.
|
[23] |
董瑞佳. 基于迁移学习和DenseNet的带式输送机托辊故障检测方法[J]. 煤炭技术,2023,42(1):250-252.
DONG Ruijia. Fault detection method of belt conveyor idler based on transfer learning and densenet[J]. Coal Technology,2023,42(1):250-252.
|
[24] |
刘宇琦. 基于深度学习的托辊异常检测方法研究[D]. 西安: 西安科技大学, 2020.
LIU Yuqi. Research on abnormal detection method of idler based on deep learning[D]. Xi'an: Xi'an University of Science and Technology, 2020.
|
[25] |
LIU Yi, MIAO Changyun, LI Xiangguo, et al. Research on the fault analysis method of belt conveyor idlers based on sound and thermal infrared image features[J]. Measurement, 2021, 186. DOI: 10.1016/j.measurement.2021.110177.
|
[26] |
CARVALHO R,NASCIMENTO R,DANGELO T,et al. A UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industry[J]. Sensors,2020,20(8):2243. DOI: 10.3390/s20082243.
|
[27] |
DABEK P,SZREK J,ZIMROZ R,et al. An automatic procedure for overheated idler detection in belt conveyors using fusion of infrared and RGB images acquired during UGV robot inspection[J]. Energies,2022,15(2):601. DOI: 10.3390/en15020601.
|
[28] |
邹斐. 煤矿井下运动目标检测与跟踪研究[D]. 西安: 西安科技大学, 2018.
ZOU Fei. The detecting and tracking methods of moving target in coal mine tunnel[D]. Xi'an: Xi'an University of Science and Technology, 2018.
|
[29] |
SI Lei,WANG Zhongbin,XU Rongxin,et al. Image enhancement for surveillance video of coal mining face based on single-scale retinex algorithm combined with bilateral filtering[J]. Symmetry,2017,9(6). DOI: 10.3390/sym9060093.
|
[30] |
秦晓伟. 基于视频端AI算法实现的矿井斜巷联动联控系统研究[D]. 淮南: 安徽理工大学, 2022.
QIN Xiaowei. Research on joint control system of mine inclined lane based on AI algorithm in video terminal[D]. Huainan: Anhui University of Science and Technology. 2022.
|
[31] |
董观利,宋春林. 基于视频的矿井行人越界检测系统[J]. 工矿自动化,2017,43(2):29-34.
DONG Guanli,SONG Chunlin. Underground pedestrian crossing detection system based on video[J]. Industry and Mine Automation,2017,43(2):29-34.
|
[32] |
李晓建. 矿井人员目标检测与跟踪算法的研究与实现[D]. 青岛: 山东科技大学, 2020.
LI Xiaojian. The research and realization of mine personnel target detection and tracking algorithm[D]. Qingdao: Shandong University of Science and Technology, 2020.
|
[33] |
田隽,钱建生,厉丹,等. 基于多摄像机的矿井危险区域目标匹配算法[J]. 中国矿业大学学报,2010,39(1):139-144.
TIAN Jun,QIAN Jiansheng,LI Dan,et al. Moving object matching algorithm in danger zones of coal mine based on multiple cameras[J]. Journal of China University of Mining & Technology,2010,39(1):139-144.
|
[34] |
杨世超. 基于Faster−RCNN的矿井人员识别检测[J]. 信息记录材料,2020,21(12):236-238.
YANG Shichao. Mine personnel identification and detection based on Faster-RCNN[J]. Information Recording Materials,2020,21(12):236-238.
|
[35] |
LIU Xiaoyang,LIU Jinqiang. Gait recognition method of underground coal mine personnel based on densely connected convolution network and stacked convolutional autoencoder[J]. Entropy,2020,22(6):695. DOI: 10.3390/e22060695.
|
[36] |
HAO Bonan, ZHANG Liya, PENG Ran. An improved vibe algorithm to detect personnel underground in coal mines[J]. Journal of Physics: Conference Series, 2021, 2025(1). DOI: 10.1088/1742-6596/2025/1/012032.
|
[37] |
饶天荣,潘涛,徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别[J]. 工矿自动化,2022,48(10):48-54.
RAO Tianrong,PAN Tao,XU Huijun. Unsafe action recognition in underground coal mine based on cross-attention mechanism[J]. Journal of Mine Automation,2022,48(10):48-54.
|
[38] |
赵小虎,黄程龙. 基于Kinect的矿井人员违规行为识别算法研究[J]. 湖南大学学报(自然科学版),2020,47(4):92-98.
ZHAO Xiaohu,HUANG Chenglong. Research on identification algorithm of mine person's violation behavior based on Kinect[J]. Journal of Hunan University(Natural Sciences),2020,47(4):92-98.
|
[39] |
陈庆峰. 矿井皮带区域矿工不安全行为识别方法的研究[D]. 徐州: 中国矿业大学, 2019.
CHEN Qingfeng. Research on recognition method of unsafe behavior of miners in mine belt area[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[40] |
李雯静,刘鑫. 基于深度学习的井下人员不安全行为识别与预警系统研究[J]. 金属矿山,2023(3):177-184.
LI Wenjing,LIU Xin. Research on underground personnel unsafe behavior identification and early warning system based on deep learning[J]. Metal Mine,2023(3):177-184.
|
[41] |
刘浩,刘海滨,孙宇,等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报,2021,46(增刊2):1159-1169.
LIU Hao,LIU Haibin,SUN Yu,et al. Intelligent recognition system of unsafe behavior of underground coal miners[J]. Journal of China Coal Society,2021,46(S2):1159-1169.
|
[42] |
黄瀚,程小舟,云霄,等. 基于DA−GCN的煤矿人员行为识别方法[J]. 工矿自动化,2021,47(4):62-66.
HUANG Han,CHENG Xiaozhou,YUN Xiao,et al. DA-GCN-based coal mine personnel action recognition method[J]. Industry and Mine Automation,2021,47(4):62-66.
|
[43] |
张立亚. 矿山智能视频分析与预警系统研究[J]. 工矿自动化,2017,43(11):16-20.
ZHANG Liya. Research on intelligent video analysis and early warning system for mine[J]. Industry and Mine Automation,2017,43(11):16-20.
|
[44] |
许军,吕俊杰,杨娟利,等. 基于图像处理的溜槽堆煤预警研究[J]. 煤炭技术,2017,36(12):232-234.
XU Jun,LYU Junjie,YANG Juanli,et al. Research on early warning of coal chute blocking based on image processing[J]. Coal Technology,2017,36(12):232-234.
|
[45] |
袁敦鹏. 基于三维点云的带式输送机跑偏及堆煤监测技术研究[D]. 徐州: 中国矿业大学, 2022.
YUAN Dunpeng. Study on the belt conveyor deviation and coal stacking monitoring based on three-dimensional point cloud[D]. Xuzhou: China University of Mining and Technology, 2022.
|
[46] |
彭利泽. 基于视觉的传输带堆煤体积监测系统设计[D]. 太原: 中北大学, 2021.
PENG Lize. Design of volume monitoring system for coal stacking in transmission belt based on vision[D]. Taiyuan: North University of China, 2021.
|
[47] |
游磊,朱兴林,秦伟,等. 基于曲面重建的带式输送机堆煤识别方法[J]. 工矿自动化,2021,47(6):45-50.
YOU Lei,ZHU Xinglin,QIN Wei,et al. Coal stacking identification method of belt conveyor based on surface reconstruction[J]. Industry and Mine Automation,2021,47(6):45-50.
|
[48] |
姜文涛,王梓民,张驰. 基于曲量场空间的皮带堆煤识别[J]. 传感器与微系统,2021,40(1):140-143.
JIANG Wentao,WANG Zimin,ZHANG Chi. Coal pile recognition based on curved space field[J]. Transducer and Microsystem Technologies,2021,40(1):140-143.
|
[49] |
孙旭. 基于机器视觉的带式输送机异物实时检测与定位研究[D]. 徐州: 中国矿业大学, 2022.
SUN Xu. Study on the machine vision for belt conveyor real-time foreign object detection and positioning[D]. Xuzhou: China University of Mining and Technology, 2022.
|
[50] |
任国强,韩洪勇,李成江,等. 基于FastYOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.
REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on FastYOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
|
[51] |
薛旭升,杨星云,齐广浩,等. 煤矿带式输送机分拣机器人异物识别与定位系统设计[J]. 工矿自动化,2022,48(12):33-41.
XUE Xusheng,YANG Xingyun,QI Guanghao,et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41.
|
[52] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
|
[53] |
杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83.
DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83.
|
[54] |
王卫东,张康辉,吕子奇,等. 基于深度学习的煤中异物机器视觉检测[J]. 矿业科学学报,2021,6(1):115-123.
WANG Weidong,ZHANG Kanghui,LYU Ziqi,et al. Machine vision detection of foreign objects in coal using deep learning[J]. Journal of Mining Science and Technology,2021,6(1):115-123.
|
[55] |
胡璟皓,高妍,张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化,2021,47(6):57-62,90.
HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62,90.
|
[56] |
吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.
WU Shoupeng,DING Enjie,YU Xiao. Foreign body identification of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
|
[57] |
郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
|
[58] |
MAO Qinghua,LI Shikun,HU Xin,et al. Coal mine belt conveyor foreign objects recognition method of improved YOLOv5 algorithm with defogging and deblurring[J]. Energies,2022,15(24):9504. DOI: 10.3390/en15249504.
|
[59] |
DAI Lili, ZHANG Xu, GARDONI P, et al. A new machine vision detection method for identifying and screening out various large foreign objects on coal belt conveyor lines[J]. Complex & Intelligent Systems, 2023: 1-14.
|
[60] |
王燕,郭潇樯,刘新华. 带式输送机大块异物视觉检测系统设计[J]. 机械科学与技术,2021,40(12):1939-1943.
WANG Yan,GUO Xiaoqiang,LIU Xinhua. Design of visual detection system for large foreign body in belt conveyor[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(12):1939-1943.
|
[61] |
毛清华,李世坤,胡鑫,等. 基于改进YOLOv7的煤矿带式输送机异物识别[J]. 工矿自动化,2022,48(12):26-32.
MAO Qinghua,LI Shikun,HU Xin,et al. Foreign object recognition of belt conveyor in coal mine based on improved YOLOv7[J]. Journal of Mine Automation,2022,48(12):26-32.
|
[62] |
姜雨辰. 遥感图像目标检测中的小样本数据扩充方法研究[D]. 长沙: 国防科技大学, 2021.
JIANG Yuchen. Research on small sample data augmentation in remote sensing images object detection[D]. Changsha: National University of Defense Technology, 2021.
|