MA Wentao, PAN Junfeng, LIU Shaohong, WANG Shuwen. Experimental research on "drilling-cutting-fracturing" pre-fracturing to prevent rock burst technology for deep hole of roof of coal seam[J]. Journal of Mine Automation, 2020, 46(1): 7-12. DOI: 10.13272/j.issn.1671-251x.2019050074
Citation: MA Wentao, PAN Junfeng, LIU Shaohong, WANG Shuwen. Experimental research on "drilling-cutting-fracturing" pre-fracturing to prevent rock burst technology for deep hole of roof of coal seam[J]. Journal of Mine Automation, 2020, 46(1): 7-12. DOI: 10.13272/j.issn.1671-251x.2019050074

Experimental research on "drilling-cutting-fracturing" pre-fracturing to prevent rock burst technology for deep hole of roof of coal seam

More Information
  • Abstract:In view of problems of complicated process of slot prefabrication and poor quality of seam formation in existing roof directional hydraulic fracturing technology, a technology of drilling, high-pressure water jet cutting and high-pressure hydraulic fracturing (drilling-cutting-fracturing) integrated pre-fracture roof to prevent rock burst was put forward, and experimental research of the technology in Hulusu Coal Mine was carried out. The experimental results show that the "drilling-cutting-fracturing" integrated technology and equipment can cut grooves manually without retreating drill pipe, and use single hole retreating multiple fracturing to improve construction efficiency. The symmetrical double hole high pressure jet device can effectively form a 4-5 mm wide artificial fracture groove to increase fracture cutting effect, reduce fracture initiation pressure,and expand fracture radius. The maximum single fracturing radius of roof strata with uniaxial compressive strength of 50-60 MPa can reach 15 m. The "drilling-cutting-facturing" technology weakens the roof and reduces the stress level of surrounding rock. The number of high-energy microseismic events near the goaf roadway has been greatly reduced, and the frequency and energy of microseismic events have not changed dramatically, so as to ensure the smooth mining of the working face.
  • Related Articles

    [1]ZHANG Jianguo, ZHAI Cheng. Pressure relief law and application of deep-buried high-stress bedding coal by hydraulic flushing[J]. Journal of Mine Automation, 2022, 48(10): 116-122, 141. DOI: 10.13272/j.issn.1671-251x.17966
    [2]MA Wentao, MA Xiaohui, LYU Dazhao, WANG Bing, ZHU Gangliang. Blasting pressure relief technology for preventing rock burst in deep heading roadway[J]. Journal of Mine Automation, 2022, 48(1): 119-124. DOI: 10.13272/j.issn.1671-251x.2021030088
    [3]QIN Ruxiang, YANG Ke, CHENG Jian. Research on the protection range of pressure-relief in the mining of upper protective layer[J]. Journal of Mine Automation, 2021, 47(11): 81-87. DOI: 10.13272/j.issn.1671-251x.2021050028
    [4]DU Jinlei, ZHANG Minbo, ZHANG Dianji, ZHANG Dangyu, ZHANG Zhen, CUI Li, WANG Zichao, LI Chunxin, ZHANG Fujian. Hydraulic cutting cooperative pressure relief and permeability enhancement technology in low permeability outburst coal seam[J]. Journal of Mine Automation, 2021, 47(7): 98-105. DOI: 10.13272/j.issn.1671-251x.17698
    [5]ZHANG Zhen. Influence of hydraulic fracturing parameters of reused coal pillar roadway on pressure relief effect[J]. Journal of Mine Automation, 2020, 46(8): 58-63. DOI: 10.13272/j.issn.1671-251x.2020060081
    [6]DONG Zhiyong. Application research on roadway protection technology by hydraulic fracturing roof cutting pressure relief in underground coal mine[J]. Journal of Mine Automation, 2019, 45(10): 99-103. DOI: 10.13272/j.issn.1671-251x.17474
    [7]LI Wujun, FU Yukai, WANG Tao, ZHANG Zhantao. Pressure relief mechanism and experiment of directional hydraulic fracturing in retaining roadway[J]. Journal of Mine Automation, 2019, 45(10): 74-79. DOI: 10.13272/j.issn.1671-251x.2019030008
    [8]LIANG Huajie, ZHANG Fengjie. Scheme of gob-side entry retaining by cutting roof to release pressure for Shiquan Coal Mine[J]. Journal of Mine Automation, 2019, 45(5): 104-108.. DOI: 10.13272/j.issn.1671-251x.17382
    [9]YANG He, QIU Liming, WANG Hao, ZHANG Ziyang, ZHAO Cong. Numerical simulation research on mining stress field of overlying coal-rock seam under far distance lower protective seam mining[J]. Journal of Mine Automation, 2017, 43(6): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.06.009
    [10]LYU Longhui, JIN Hongxia. Methods of increasing amount of pressure-relief gas of protective layer[J]. Journal of Mine Automation, 2016, 42(7): 70-72. DOI: 10.13272/j.issn.1671-251x.2016.07.017
  • Cited by

    Periodical cited type(16)

    1. 马文涛,潘俊锋,马小辉,吕大钊,王冰. 高应力巷道底板冲击机制及多层次防治技术. 采矿与岩层控制工程学报. 2025(01): 183-194 .
    2. 赵常辛,李晓旭,石蒙,冀瑞锋,张焱. 坚硬顶板切顶卸压技术对巷道围岩变形规律影响. 工矿自动化. 2024(01): 147-154 . 本站查看
    3. 段金红,秦子晗,金建成,邵常雄,高健勋,李永元,张暤,王大龙,李高正. 特厚煤层孤岛煤柱水力扩孔防冲卸压技术研究. 煤炭工程. 2024(02): 81-86 .
    4. 陈旭,张朋,张金宝. 煤矿井下防冲击地压技术的应用研究. 中国设备工程. 2024(07): 233-235 .
    5. 邓辉,王铁宏,马文涛. 中央大巷采空区影响区域冲击危险源探测技术. 陕西煤炭. 2024(05): 80-84 .
    6. 潘俊锋,刘少虹,马文涛,高家明,马宏源. 交叉扇形断顶爆破防治临空回采巷道冲击地压技术. 工矿自动化. 2024(12): 11-17 . 本站查看
    7. 徐景果,张向阳,陈星. 基于震波CT探测的工作面冲击危险性评价及防治. 陕西煤炭. 2023(02): 95-99 .
    8. 王璐,朱国强,曲荣超. 煤矿井下防冲击地压技术的应用研究. 山东煤炭科技. 2023(03): 177-179 .
    9. 朱国强,曲荣超,王璐. 基于巷道爆破的防冲击地压工艺的应用研究. 山东煤炭科技. 2023(03): 183-185+191 .
    10. 杨增强,刘畅,宋洁,白洋,靳会武,王大伟. 褶曲构造影响区内工作面开采诱冲机理及其防治研究. 工矿自动化. 2023(10): 151-159 . 本站查看
    11. 马文涛,马小辉,吕大钊,王冰,朱刚亮. 深部掘进巷道爆破卸压防治冲击地压技术. 工矿自动化. 2022(01): 119-124 . 本站查看
    12. 周雷,李立,夏彬伟,于斌. 含径向水力割缝钻孔导向压裂裂缝形态及影响要素. 煤炭学报. 2022(04): 1559-1570 .
    13. 康红普,姜鹏飞,冯彦军,赵凯凯. 煤矿巷道围岩卸压技术及应用. 煤炭科学技术. 2022(06): 1-15 .
    14. 丛利,翁明月,秦子晗,冯美华. 坚硬顶板三次强扰动临空宽煤柱诱冲机制及防治. 煤炭学报. 2022(S1): 125-134 .
    15. 李岩,黄锐,王元杰,陈法兵,高建波,郝瑞. 顶板水力压裂防治冲击地压效果评价研究. 煤炭技术. 2022(11): 168-172 .
    16. 马文涛. 基于ALE算法的连续高压水射流破岩数值模拟. 煤炭工程. 2022(12): 164-169 .

    Other cited types(4)

Catalog

    WANG Shuwen

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (182) PDF downloads (32) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return