Citation: | LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163. DOI: 10.13272/j.issn.1671-251x.18045 |
[1] |
EXCELL P S, BUTCHER G H, HOWSON D P. Towards a safety standard for radiofrequency hazards to flammable mixtures—progress and problems[C]. IEEE International Symposium on Electromagnetic Compatibility, San Diego, 1979: 1-5.
|
[2] |
BURSTOW D J,LOVELAND R J,TOMLINSON R,et al. Radio frequency ignition hazards[J]. Radio and Electronic Engineer,1981,51(4):151-169. DOI: 10.1049/ree.1981.0021
|
[3] |
HOWSON D P,EXCELL P S,BUTCHER G H. Ignition of flammable gas/air mixtures by sparks from 2 MHz and 9 MHz sources[J]. Radio and Electronic Engineer,1981,51(4):170-174. DOI: 10.1049/ree.1981.0022
|
[4] |
ROSENFELD J L J,STRACHAN D C,TROMANS P S,et al. Experiments on the incendivity of radio-frequency,breakflash discharges (1.8-21 MHz c. w. )[J]. Radio and Electronic Engineer,1981,51(4):175-186. DOI: 10.1049/ree.1981.0023
|
[5] |
MADDOCKS A J,JACKSON G A. Measurements of radio frequency voltage and power induced in structures on the St Fergus gas terminals[J]. Radio and Electronic Engineer,1981,51(4):187-194. DOI: 10.1049/ree.1981.0024
|
[6] |
ROBERTSON S S J,LOVELAND R J. Radio-frequency ignition hazards:a review[J]. Physical Science,Measurement and Instrumentation,Management and Education-Reviews,IEE Proceedings A,1981,128(9):607-614.
|
[7] |
EXCELL P S,MADDOCKS A J. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 1:Electrically-small structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):27-32. DOI: 10.1049/jiere.1986.0006
|
[8] |
EXCELL P S,HOWSON D P. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 2:Electrically-large structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):33-36. DOI: 10.1049/jiere.1986.0008
|
[9] |
JAMES R A,EXCELL P S,KELLER A Z. Probabilistic factors in radio-frequency ignition and detonation hazards analyses[J]. Reliability Engineering,1987,17(2):139-153. DOI: 10.1016/0143-8174(87)90012-6
|
[10] |
EXCELL P S,JAMES R A,KELLER A Z. Strategic problems in the drafting and implementation of safety guides for the prevention of radio frequency radiation hazards[J]. International Journal of Quality & Reliability Management,1988,5(5):47-61.
|
[11] |
孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018
SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018
|
[12] |
刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91. DOI: 10.13272/j.issn.1671-251x.2020090050
LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91. DOI: 10.13272/j.issn.1671-251x.2020090050
|
[13] |
MENG Jijian. Research on wireless power transmission in coal mine based on explosion-proof safety[C]. IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, 2021: 1700-1704.
|
[14] |
郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33. DOI: 10.13272/j.issn.1671-251x.2021010066
ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33. DOI: 10.13272/j.issn.1671-251x.2021010066
|
[15] |
张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138. DOI: 10.13347/j.cnki.mkaq.2022.08.021
ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138. DOI: 10.13347/j.cnki.mkaq.2022.08.021
|
1. |
张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 .
![]() | |
2. |
刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 .
![]() | |
3. |
尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 .
![]() | |
4. |
贾良杰,胡子波,赵娟. 基于永磁变频技术的刮板输送机调速系统节能分析. 煤矿机械. 2023(03): 139-141 .
![]() | |
5. |
胡而已,张耀. 激光煤流量测量中光斑条纹过饱和问题研究. 煤炭科学技术. 2023(02): 377-389 .
![]() | |
6. |
郝洪涛,王凯,丁文捷. 基于超声阵列的输送带动态煤量检测系统. 工矿自动化. 2023(04): 120-127 .
![]() | |
7. |
吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 .
![]() | |
8. |
陈湘源,薛旭升. 基于线性模型划分的煤流体积测量. 工矿自动化. 2023(07): 35-40+106 .
![]() | |
9. |
朱富文,侯志会,李明振. 轻量化的多尺度跨通道注意力煤流检测网络. 工矿自动化. 2023(08): 100-105 .
![]() | |
10. |
刘飞,张乐群,潘红光,李利. 带式输送机煤量检测技术及其发展趋势. 中国煤炭. 2023(09): 77-83 .
![]() | |
11. |
郭永涛,裴文良,马永飞,张旭华,谢海峰,寇丽梅. 矿用隔爆型煤量扫描装置的设计与应用. 集成电路应用. 2023(10): 322-323 .
![]() | |
12. |
汪连成. 刮板输送机智能化技术及应用. 煤矿机械. 2022(01): 138-140 .
![]() | |
13. |
刘新龙,胡平,吕晨辉,赵安新,李学文. 基于激光红外线扫描的带式输送机煤流量实时检测技术. 煤炭技术. 2022(01): 217-219 .
![]() | |
14. |
王利欣,杨秀宇,袁鹏喆,尉瑞,秦文光,李波,张恩明. 智能掘进工作面智能视频安全管理系统的应用. 煤矿机械. 2022(09): 200-203 .
![]() | |
15. |
孙鹏亮,吴少伟. 基于红外扫描装置的转载机煤量监测技术研究. 数字通信世界. 2022(08): 63-65 .
![]() | |
16. |
郑忠友,朱磊,程海星,张光磊. 综放工作面采放协调关系及智能装备研究. 煤矿机械. 2021(01): 54-56 .
![]() | |
17. |
卢进南,韩建国,王常宝,郭友瑞,王志良. 热电厂运煤车厢动态监测及体积测量方法. 煤矿机电. 2021(01): 49-53+56 .
![]() | |
18. |
孙延飞. 悬臂掘进机截割方量测量系统设计. 煤矿机械. 2021(09): 24-26 .
![]() | |
19. |
崔亚平,朱时雪. 基于激光线扫描的桥梁检测仪器误差自动化矫正方法研究. 自动化与仪器仪表. 2020(01): 32-35 .
![]() | |
20. |
韩涛,黄友锐,张立志,徐善永,许家昌,鲍士水. 基于图像识别的带式输送机输煤量和跑偏检测方法. 工矿自动化. 2020(04): 17-22 .
![]() | |
21. |
王杰. 矿用隔爆型煤量扫描装置设计与应用. 煤. 2020(06): 49-50 .
![]() | |
22. |
赵倩,陈杨军. 激光技术的轨道表面瑕疵识别系统设计. 激光杂志. 2020(08): 110-114 .
![]() | |
23. |
王文清,田柏林,冯海明,陈兴明,李萍,任安祥. 基于激光测距矿用带式输送机多参数检测方法研究. 煤炭科学技术. 2020(08): 131-138 .
![]() | |
24. |
武国平,梁兴国,胡金良,葛小冬. 图像处理和SVM应用于煤矸石分选的实验研究. 信息技术. 2019(01): 97-102+107 .
![]() |