LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163. DOI: 10.13272/j.issn.1671-251x.18045
Citation: LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163. DOI: 10.13272/j.issn.1671-251x.18045

Research on safe power threshold of radio wave explosion-proof in coal mine

More Information
  • Received Date: October 13, 2022
  • Revised Date: December 13, 2022
  • Available Online: December 22, 2022
  • In order to prevent gas explosion caused by radio waves emitted by wireless equipment in the coal mine, the power and energy of radio waves in coal mines should be limited. This paper introduces the safety power threshold of continuous radio wave explosion-proof specified in different standards. ① GB/T 3836.1-2021 Explosive atmospheres-Part 1: Equipment-General requirements and the international standard IEC 60079-0:2017 Explosive atmospheres-Part 0: Equipment-General requirements refer to the European standard CLC/TR 50427:2004 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide. When there is no slender structure object (such as a crane) that can be used as a receiving antenna in an explosive environment, the clause that the explosion-proof safety power threshold of continuous radio wave in Class I environment (representative gas is methane) is 8 W is omitted. It is indiscriminately stipulated that the safe power threshold of continuous radio wave explosion-proof in Class I environment is 6 W. ② The British Standard BS 6656:1991 Guide to prevention of inadvertent ignition of flammable atmospheres by radio-frequency radiation specifies that for continuous radio-wave operating frequencies greater than 30 MHz in a Class I environment, the safe power threshold for continuous radio-wave explosion-proof is 8 W, Whether there is a crane or other slender annular structure object. ③ The British Standard BS 6656:2002 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation - Guide and the European Standard CLC/TR 50427:2004 both specify a safety power threshold of 8 W for continuous radio-wave explosion-proof in Class I environments without slender annular structures such as cranes. The safe power threshold of continuous radio wave explosion-proof in Class I environment with slender annular structures such as cranes is 6 W. The characteristic of the underground environment and equipment in the coal mine are analyzed. Generally, there is no crane underground. The underground coal mine is a confined space, with a long roadway but a small roadway section. Cable, water pipe, rail, steel wire rope, overhead line, tape rack and other axial conductors laid along the roadway axis are thin and long, but will not form a ring antenna conducive to radio wave reception. Transverse conductors such as roadway I-beam support can form a ring antenna conducive to radio wave reception. However, the section of the I-steel conductor is large, which does not meet the characteristics of slender structure. The hydraulic support in the fully mechanized working face can form an annular structure. However, the hydraulic support jack divides it into multiple annular structures. The support conductor section is large, which does not meet the characteristics of slender structure. It is pointed out that before the explosion-proof safety power threshold of continuous radio wave in coal mine is implemented to 6 W, the mine wireless communication systems such as leakage, induction, through-the-ground and multi-base stations have been widely used in the coal mine. And there is no case of gas and coal dust explosion accident. Therefore, the threshold of explosion-proof safety power of radio wave in the coal mine is set as 6 W without distinction, which lacks of theoretical analysis and experimental verification. In particular, 5G, WiFi 6, UWB, ZigBee and other mining mobile communication systems and personnel and vehicle positioning system working frequency is higher. Therefore, the coal mine continuous radio wave explosion-proof safety power threshold should be 8 W.
  • [1]
    EXCELL P S, BUTCHER G H, HOWSON D P. Towards a safety standard for radiofrequency hazards to flammable mixtures—progress and problems[C]. IEEE International Symposium on Electromagnetic Compatibility, San Diego, 1979: 1-5.
    [2]
    BURSTOW D J,LOVELAND R J,TOMLINSON R,et al. Radio frequency ignition hazards[J]. Radio and Electronic Engineer,1981,51(4):151-169. DOI: 10.1049/ree.1981.0021
    [3]
    HOWSON D P,EXCELL P S,BUTCHER G H. Ignition of flammable gas/air mixtures by sparks from 2 MHz and 9 MHz sources[J]. Radio and Electronic Engineer,1981,51(4):170-174. DOI: 10.1049/ree.1981.0022
    [4]
    ROSENFELD J L J,STRACHAN D C,TROMANS P S,et al. Experiments on the incendivity of radio-frequency,breakflash discharges (1.8-21 MHz c. w. )[J]. Radio and Electronic Engineer,1981,51(4):175-186. DOI: 10.1049/ree.1981.0023
    [5]
    MADDOCKS A J,JACKSON G A. Measurements of radio frequency voltage and power induced in structures on the St Fergus gas terminals[J]. Radio and Electronic Engineer,1981,51(4):187-194. DOI: 10.1049/ree.1981.0024
    [6]
    ROBERTSON S S J,LOVELAND R J. Radio-frequency ignition hazards:a review[J]. Physical Science,Measurement and Instrumentation,Management and Education-Reviews,IEE Proceedings A,1981,128(9):607-614.
    [7]
    EXCELL P S,MADDOCKS A J. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 1:Electrically-small structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):27-32. DOI: 10.1049/jiere.1986.0006
    [8]
    EXCELL P S,HOWSON D P. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 2:Electrically-large structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):33-36. DOI: 10.1049/jiere.1986.0008
    [9]
    JAMES R A,EXCELL P S,KELLER A Z. Probabilistic factors in radio-frequency ignition and detonation hazards analyses[J]. Reliability Engineering,1987,17(2):139-153. DOI: 10.1016/0143-8174(87)90012-6
    [10]
    EXCELL P S,JAMES R A,KELLER A Z. Strategic problems in the drafting and implementation of safety guides for the prevention of radio frequency radiation hazards[J]. International Journal of Quality & Reliability Management,1988,5(5):47-61.
    [11]
    孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018
    [12]
    刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91. DOI: 10.13272/j.issn.1671-251x.2020090050

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91. DOI: 10.13272/j.issn.1671-251x.2020090050
    [13]
    MENG Jijian. Research on wireless power transmission in coal mine based on explosion-proof safety[C]. IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, 2021: 1700-1704.
    [14]
    郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33. DOI: 10.13272/j.issn.1671-251x.2021010066

    ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33. DOI: 10.13272/j.issn.1671-251x.2021010066
    [15]
    张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138. DOI: 10.13347/j.cnki.mkaq.2022.08.021

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138. DOI: 10.13347/j.cnki.mkaq.2022.08.021
  • Related Articles

    [1]LIU Guangwei, GUO Zhiqing, LIU Wei. Prediction model of slope deformation in open pit mines based on GJO-MLP[J]. Journal of Mine Automation, 2023, 49(9): 155-166. DOI: 10.13272/j.issn.1671-251x.2023070017
    [2]YANG Hongtao, YU Yin, XU Jichan, SHEN Mei, LU Guanghui. Coal mine roadway deformation measurement system based on line scanning principle[J]. Journal of Mine Automation, 2022, 48(7): 113-117, 148. DOI: 10.13272/j.issn.1671-251x.2022060012
    [3]JIAO Rongkun, ZHANG Xuebo, LI Yi. Research on negative pressure distribution laws of drainage borehole with different deformation and instability[J]. Journal of Mine Automation, 2019, 45(5): 40-45. DOI: 10.13272/j.issn.1671-251x.2018070064
    [4]FENG Chao, FAN Gongqin. Research on deformation law of roadway surrounding rock in Cuijiagou Coal Mine[J]. Journal of Mine Automation, 2018, 44(11): 95-99. DOI: 10.13272/j.issn.1671—251x.2018030046
    [5]CHEN Shun, ZHENG Nanshan, QI Yun, BAN Meng. Application research on Offset Tracking technology in monitoring oflarge surface deformation in coal mine subsidence area[J]. Journal of Mine Automation, 2017, 43(6): 32-37. DOI: 10.13272/j.issn.1671-251x.2017.06.008
    [6]MA Caoyuan, LUO Yanfang, LI Chunxiao, CUI Lianhua. Fault line selection method based on local global consistency learning algorithm[J]. Journal of Mine Automation, 2015, 41(10): 32-36. DOI: 10.13272/j.issn.1671-251x.2015.10.009
    [7]LOU Quan, LI Zhonghui, LI Aiguo, ZHANG Songshan, WANG Yabo. Research of infrared radiation characteristics of concrete deformation and failure[J]. Journal of Mine Automation, 2015, 41(7): 44-48. DOI: 10.13272/j.issn.1671-251x.2015.07.011
    [8]LIU Dong, ZHENG Nan-shan, QIAN Jin. Application Research of GPS Technology in Vertical Deformation Monitoring of Coal Mine[J]. Journal of Mine Automation, 2012, 38(7): 14-17.
    [9]WEI Shi-ming, CHAI Jing, YIN Shi-xian. Research of Pre-peak Deformation Detection of Rock with Fiber Bragg Grating Sensing[J]. Journal of Mine Automation, 2011, 37(3): 29-32.
    [10]WEI Shi-min~, CHAI Jing~. Research of Detecting Method for Deformation and Destroy of Rock[J]. Journal of Mine Automation, 2010, 36(7): 86-89.
  • Cited by

    Periodical cited type(24)

    1. 张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 .
    2. 刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 .
    3. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
    4. 贾良杰,胡子波,赵娟. 基于永磁变频技术的刮板输送机调速系统节能分析. 煤矿机械. 2023(03): 139-141 .
    5. 胡而已,张耀. 激光煤流量测量中光斑条纹过饱和问题研究. 煤炭科学技术. 2023(02): 377-389 .
    6. 郝洪涛,王凯,丁文捷. 基于超声阵列的输送带动态煤量检测系统. 工矿自动化. 2023(04): 120-127 . 本站查看
    7. 吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 .
    8. 陈湘源,薛旭升. 基于线性模型划分的煤流体积测量. 工矿自动化. 2023(07): 35-40+106 . 本站查看
    9. 朱富文,侯志会,李明振. 轻量化的多尺度跨通道注意力煤流检测网络. 工矿自动化. 2023(08): 100-105 . 本站查看
    10. 刘飞,张乐群,潘红光,李利. 带式输送机煤量检测技术及其发展趋势. 中国煤炭. 2023(09): 77-83 .
    11. 郭永涛,裴文良,马永飞,张旭华,谢海峰,寇丽梅. 矿用隔爆型煤量扫描装置的设计与应用. 集成电路应用. 2023(10): 322-323 .
    12. 汪连成. 刮板输送机智能化技术及应用. 煤矿机械. 2022(01): 138-140 .
    13. 刘新龙,胡平,吕晨辉,赵安新,李学文. 基于激光红外线扫描的带式输送机煤流量实时检测技术. 煤炭技术. 2022(01): 217-219 .
    14. 王利欣,杨秀宇,袁鹏喆,尉瑞,秦文光,李波,张恩明. 智能掘进工作面智能视频安全管理系统的应用. 煤矿机械. 2022(09): 200-203 .
    15. 孙鹏亮,吴少伟. 基于红外扫描装置的转载机煤量监测技术研究. 数字通信世界. 2022(08): 63-65 .
    16. 郑忠友,朱磊,程海星,张光磊. 综放工作面采放协调关系及智能装备研究. 煤矿机械. 2021(01): 54-56 .
    17. 卢进南,韩建国,王常宝,郭友瑞,王志良. 热电厂运煤车厢动态监测及体积测量方法. 煤矿机电. 2021(01): 49-53+56 .
    18. 孙延飞. 悬臂掘进机截割方量测量系统设计. 煤矿机械. 2021(09): 24-26 .
    19. 崔亚平,朱时雪. 基于激光线扫描的桥梁检测仪器误差自动化矫正方法研究. 自动化与仪器仪表. 2020(01): 32-35 .
    20. 韩涛,黄友锐,张立志,徐善永,许家昌,鲍士水. 基于图像识别的带式输送机输煤量和跑偏检测方法. 工矿自动化. 2020(04): 17-22 . 本站查看
    21. 王杰. 矿用隔爆型煤量扫描装置设计与应用. 煤. 2020(06): 49-50 .
    22. 赵倩,陈杨军. 激光技术的轨道表面瑕疵识别系统设计. 激光杂志. 2020(08): 110-114 .
    23. 王文清,田柏林,冯海明,陈兴明,李萍,任安祥. 基于激光测距矿用带式输送机多参数检测方法研究. 煤炭科学技术. 2020(08): 131-138 .
    24. 武国平,梁兴国,胡金良,葛小冬. 图像处理和SVM应用于煤矸石分选的实验研究. 信息技术. 2019(01): 97-102+107 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1359) PDF downloads (75) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return