QUE Jianli. Construction and implementation of platform for intelligent mine[J]. Journal of Mine Automation, 2018, 44(4): 90-94. DOI: 10.13272/j.issn.1627-251x.17317
Citation: QUE Jianli. Construction and implementation of platform for intelligent mine[J]. Journal of Mine Automation, 2018, 44(4): 90-94. DOI: 10.13272/j.issn.1627-251x.17317

Construction and implementation of platform for intelligent mine

More Information
  • In view of problems of small anount of acquisition of basic parameter, low value of comprehensive utilization of integrated data, single data applications and analysis existed in construction of current digital mine, content of intelligent mine platform was discussed, architecture design of the intelligent mine platform was put forward, key technologies in the platform implementation was introduced.The platform uses perception technology and high reliability control technology to realize omni-directional perception and Internet of thngs control for environment, staff, equipment, and intelligent monitoring for overall production process; uses big data processing technology to build a unified data operation and maintenance layer, and can realize unified management, utilization of mine master data, real-time monitoring data, geographic measurement data, operation management data, and improve utilization rate of the data; uses big data and deep learning technology to gather and classify collected, input and extracted data, which realizes comprehensive utilization of the data, and improves capacity of mine control and management.
  • Related Articles

    [1]​​LIU Yao, LIU Zaibin, XING Zhen. Deep learning-based feature extraction and intelligent screening method for time-lapse resistivity monitoring data in mines[J]. Journal of Mine Automation, 2025, 51(7): 59-65. DOI: 10.13272/j.issn.1671-251x.2025050016
    [2]LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation, 2025, 51(3): 156-164. DOI: 10.13272/j.issn.1671-251x.2024080043
    [3]GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011
    [4]WANG Xufeng. Location trajectory prediction of mining vehicles based on depth learning[J]. Journal of Mine Automation, 2024, 50(S1): 48-52.
    [5]ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043
    [6]LI Jincai, FU Wenlong, WANG Renming, CHEN Xing, MENG Jiaxin. Intelligent fault diagnosis of rolling bearings based on deep network[J]. Journal of Mine Automation, 2022, 48(4): 78-88. DOI: 10.13272/j.issn.1671-251x.2022010008
    [7]HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041
    [8]ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010
    [9]LI Changwen, CHENG Zeyin, ZHANG Xiaogang, DING Hua. Fault diagnosis of shearer rocker gear based on deep residual network[J]. Journal of Mine Automation, 2021, 47(3): 71-78. DOI: 10.13272/j.issn.1671-251x.2020110043
    [10]TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068
  • Cited by

    Periodical cited type(45)

    1. 任天航,郑莉,何也. 现代测绘地理信息技术在智慧矿山环境治理中的应用进展. 稀有金属. 2024(03): 427-439 .
    2. 曹亮. 基于Adam算法BP神经网络的矿井环境瓦斯浓度预测模型. 湖南科技大学学报(自然科学版). 2024(01): 18-23 .
    3. 惠树军. 郭家湾煤矿智能综合管理平台应用研究. 山东煤炭科技. 2024(09): 169-173+178 .
    4. 江鹤,程德强,乙夫迪,汪鹏,崔文,寇旗旗. 新一代信息技术在智能矿山中的研究与应用综述. 工矿自动化. 2024(11): 1-16 . 本站查看
    5. 王雪峰,蒋鑫,俞进发,张正飞,黄金武. 基于湖仓架构的智能矿山大数据融合共享平台设计与应用. 现代矿业. 2024(12): 214-218 .
    6. 杨林,赵春雷. 煤矿智能化巡检机器人系统设计与现场应用. 山西焦煤科技. 2024(12): 42-46 .
    7. 许丹. 某铁矿自动化生产信息平台的设计与应用. 现代矿业. 2023(01): 247-250 .
    8. 张建中,王云搏,杨军辉,杨印朝,吴红林,陈锋,张健. 邢东矿充填开采智能化技术及工程实践. 工矿自动化. 2023(03): 142-148 . 本站查看
    9. 杨坤尧,王立杰,李聪,孙琳琳. 智能矿山一体化管控平台研究及实施. 现代矿业. 2023(04): 245-248 .
    10. 张靖. 智能矿山综合管控平台的三维模型界面设计及应用. 煤田地质与勘探. 2023(06): 85-91 .
    11. 吴耀昕,杜国军. 西部矿业锡铁山智能矿山建设实践及探讨. 现代矿业. 2023(06): 1-4+9 .
    12. 张文全. 数字化智能矿山系统在露天石灰石矿山采矿技术应用. 西部探矿工程. 2023(11): 159-161+164 .
    13. 许联航,高捷,叶壮,赖岳华. 基于图像处理与磁探伤技术的工作面刮板输送机在线监测系统. 煤炭科学技术. 2023(S1): 390-395 .
    14. 赵子瑜,毕林. 矿边智能:智能矿山边缘侧建设新趋势. 黄金科学技术. 2023(06): 964-977 .
    15. 刘斌. 煤矿大数据安全预警云平台设计. 中国新技术新产品. 2022(02): 146-148 .
    16. 张倍宁,李伟东,汪义龙,孙晓虎,伏明,李荣进. 基于三级管控架构的智能化综合管控平台. 煤矿安全. 2022(06): 137-142 .
    17. 张鑫. 智慧绿色矿山建设技术研究. 现代工业经济和信息化. 2022(08): 87-89 .
    18. 崔亚仲,任艳艳,白明亮. 神东矿区煤炭智能化建设实践. 煤炭科学技术. 2022(S1): 218-226 .
    19. 刘道玉,程宝军. 基于位置服务的煤矿智能化综合管控平台研究与应用. 中国煤炭. 2022(09): 94-102 .
    20. 任艳艳,张磊. 基于工业互联网的煤矿生产管控平台研究. 内蒙古煤炭经济. 2022(12): 33-36 .
    21. 贺海涛,张立辉,王旭峰,王俊辉,潘子宇,王鑫,陈龙,田滨. 面向矿用辅助运输车辆的智能无人运输系统研究. 工矿自动化. 2022(S1): 72-75 . 本站查看
    22. 白奋龙,徐帅,梁庆荣. 智能矿山部分系统技术设备管理应用与创新. 陕西煤炭. 2022(06): 164-168+182 .
    23. 张兵. 煤矿智能化综合管控平台研究. 工矿自动化. 2022(S2): 65-69 . 本站查看
    24. 孟建,薛峰. 基于PLC联网、万兆环网和组态软件的智控平台研究. 煤炭科技. 2022(05): 103-111+116 .
    25. Yang Fu,Gang Zhu,Mingliang Zhu,Fuzhen Xuan. Digital Twin for Integration of Design-Manufacturing-Maintenance: An Overview. Chinese Journal of Mechanical Engineering. 2022(04): 17-36 .
    26. 朱超波,黄自力. 矿业信息化平台建设模式探讨. 现代矿业. 2021(01): 139-141 .
    27. 荆诚,刘丽静,陈醒,周朴凡. 面向对象的设备建模方法及其应用. 工矿自动化. 2021(04): 113-115+120 . 本站查看
    28. 韩安,陈晓晶,贺耀宜,高文. 智能矿山综合管控平台建设构思. 工矿自动化. 2021(08): 7-14 . 本站查看
    29. 王飞,罗伟,任文清,张婧. 基于4G网络的采煤机数据上传系统设计. 陕西煤炭. 2020(01): 115-117 .
    30. 姚超修. 一种矿井光纤通信中故障旁路设计方法. 能源技术与管理. 2020(02): 20-21+40 .
    31. 聂珍,马宏伟. 煤矿巡检机器人巷道气体环境智能检测系统设计. 工矿自动化. 2020(06): 17-22 . 本站查看
    32. 董洪波,姚宁平,马斌,廖姜男. 煤矿井下坑道钻机电控自动化技术研究. 煤田地质与勘探. 2020(03): 219-224 .
    33. 姚超修. 基于IP1810的矿用千兆光端机设计. 山东煤炭科技. 2020(06): 204-205+212 .
    34. 王鹏. 智慧矿山安全管控大数据平台建设探讨. 煤炭工程. 2020(08): 154-158 .
    35. 张建锋. 基于云平台的智能矿山管控平台软件的设计. 自动化与仪器仪表. 2020(08): 107-110 .
    36. 张丹,安晶. 基于智能化技术的金属非金属矿山事故隐患治理对策研究. 有色金属工程. 2020(09): 113-116 .
    37. 赵宇波,雷小平,康孝武,张鹏鹏,范倩楠,李祥. 安全生产信息共享平台在陕煤矿井中的应用. 陕西煤炭. 2020(05): 196-199+217 .
    38. 潘祥生,陈晓晶. 矿用智能巡检机器人关键技术研究. 工矿自动化. 2020(10): 43-48 . 本站查看
    39. 何帅,王海洋,赵力. 露天煤矿智慧化建设关键技术及智能管控理念. 煤矿安全. 2020(10): 298-304 .
    40. 许志,李敬兆,张传江,姚磊,王继伟. 轻量化CNN及其在煤矿智能视频监控中的应用. 工矿自动化. 2020(12): 13-19 . 本站查看
    41. 柳波. 基于PostgreSQL的智能矿山空间数据集中管理研究. 化工矿物与加工. 2019(02): 52-56 .
    42. 王万丽,孙超,宿国瑞. 基于云平台的煤矿安全智能管控信息平台设计. 煤炭工程. 2019(06): 52-56 .
    43. 张瑞新,毛善君,赵红泽,郭苏煜,贾宏君,赵学彬,孙健东,王群,李淋,马远平,王宇新,郭帅,鲍海明,林钰淇. 智慧露天矿山建设基本框架及体系设计. 煤炭科学技术. 2019(10): 1-23 .
    44. 盛璐. 煤炭企业专网加速体系构建. 工矿自动化. 2018(09): 67-72 . 本站查看
    45. 毛善君,夏良,陈华州. 基于安全生产的智能煤矿管控系统. 煤矿安全. 2018(12): 102-107 .

    Other cited types(21)

Catalog

    Article Metrics

    Article views (153) PDF downloads (39) Cited by(66)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return