Citation: | LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation,2025,51(3):156-164. DOI: 10.13272/j.issn.1671-251x.2024080043 |
Accurate identification of rock fracture types is crucial for the prediction and early warning of coal mine rockburst hazards. Microseismic monitoring has been widely used for detecting rock fractures. However, conventional machine learning methods for microseismic signal analysis exhibited limited feature extraction capabilities and were highly susceptible to noise, leading to reduced classification accuracy and poor generalization performance. To address these limitations, this study proposed a novel rock fracture type recognition method based on deep feature learning of microseismic signals. In this study, microseismic signals corresponding to tensile and shear fractures were collected through Brazilian disc splitting and direct shear tests, respectively. These signals were then processed to construct a microseismic signal aggregation (MSA) spectrogram, which integrated time-frequency spectrograms, log-Mel spectrograms, and Mel-frequency cepstral coefficients. To enhance feature extraction efficiency, an improved DenseNet model (SE-MPDenseNet) was developed by incorporating multi-feature parallel dense blocks (MP-DenseBlock) and squeeze-and-excitation transition layers (SE-TransLayer). The extracted deep feature vectors were subsequently fed into an optimized LightGBM classifier (HBL-LightGBM), which was modified with a Hinge Loss function to improve classification performance. To evaluate the effectiveness of the proposed method, a true triaxial loading test was conducted to simulate rockburst hazards under realistic underground engineering conditions. Experimental results demonstrated that the proposed approach achieved a rock fracture type recognition accuracy of 92.12%, significantly outperforming conventional methods in both feature extraction capability and generalization ability. The findings indicate that the proposed method provides a robust and effective framework for microseismic-based rock fracture classification. It offers valuable insights for rockburst hazard monitoring and mitigation in mining and geotechnical engineering.
[1] |
FENG Xiating,CHEN Bingrui,LI Shaojun,et al. Studies on the evolution process of rockbursts in deep tunnels[J]. Journal of Rock Mechanics and Geotechnical Engineering,2012,4(4):289-295. DOI: 10.3724/SP.J.1235.2012.00289
|
[2] |
SU Guoshao,JIANG Jianqing,ZHAI Shaobin,et al. Influence of tunnel axis stress on strainburst:an experimental study[J]. Rock Mechanics and Rock Engineering,2017,50(6):1551-1567. DOI: 10.1007/s00603-017-1181-7
|
[3] |
SU Guoshao,SHI Yanjiong,FENG Xiating,et al. True-triaxial experimental study of the evolutionary features of the acoustic emissions and sounds of rockburst processes[J]. Rock Mechanics and Rock Engineering,2018,51(2):375-389. DOI: 10.1007/s00603-017-1344-6
|
[4] |
赵国富,苏国韶,胡诗红,等. 一种基于微震试验的硬岩破裂模式识别方法[J]. 实验力学,2022,37(1):107-117.
ZHAO Guofu,SU Guoshao,HU Shihong,et al. A recognition method of cracking types for hard rock based on microseisms tests[J]. Journal of Experimental Mechanics,2022,37(1):107-117.
|
[5] |
李德春,葛宝堂,舒继森. 岩体破坏过程中的电阻率变化试验[J]. 中国矿业大学学报,1999,28(5):80-82.
LI Dechun,GE Baotang,SHU Jisen. Experiment of resistivity variation of rocks in failure process[J]. Journal of China University of Mining & Technology,1999,28(5):80-82.
|
[6] |
李术才,许新骥,刘征宇,等. 单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化[J]. 岩石力学与工程学报,2014,33(1):14-23.
LI Shucai,XU Xinji,LIU Zhengyu,et al. Electrical resistivity and acoustic emission response characteristics and damage evolution of sandstone during whole process of uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):14-23.
|
[7] |
李忠辉,王恩元,何学秋,等. 含水量对煤岩电磁辐射特征的影响[J]. 中国矿业大学学报,2006,35(3):362-366.
LI Zhonghui,WANG Enyuan,HE Xueqiu,et al. Effect of moisture content on electromagnetic radiation characteristic of coal or rock[J]. Journal of China University of Mining & Technology,2006,35(3):362-366.
|
[8] |
李夕兵,万国香,周子龙. 岩石破裂电磁辐射频率与岩石属性参数的关系[J]. 地球物理学报,2009,52(1):253-259.
LI Xibing,WAN Guoxiang,ZHOU Zilong. The relation between the frequency of electromagnetic radiation (EMR) induced by rock fracture and attribute parameters of rock masses[J]. Chinese Journal of Geophysics,2009,52(1):253-259.
|
[9] |
高煜,胡宾鑫,朱峰,等. 微震初至波到时自动拾取研究[J]. 工矿自动化,2020,46(12):106-110.
GAO Yu,HU Binxin,ZHU Feng,et al. Research on automatic picking of microseismic first arrival[J]. Industry and Mine Automation,2020,46(12):106-110.
|
[10] |
何风贞,李桂臣,阚甲广,等. 岩石多尺度损伤研究进展[J]. 煤炭科学技术,2024,52(10):33-53.
HE Fengzhen,LI Guichen,KAN Jiaguang,et al. Research progress on multi-scale damage of rock[J]. Coal Science and Technology,2024,52(10):33-53.
|
[11] |
张凯,张东晓,赵勇强,等. 损伤岩石声发射演化特征及响应机制试验研究[J]. 煤田地质与勘探,2024,52(3):96-106.
ZHANG Kai,ZHANG Dongxiao,ZHAO Yongqiang,et al. Experimental study on acoustic emission evolution characteristics and response mechanism of damaged rocks[J]. Coal Geology & Exploration,2024,52(3):96-106.
|
[12] |
张泽坤,宋战平,程昀,等. 加载速率影响下类硬岩声发射及破裂响应特征[J]. 煤田地质与勘探,2022,50(2):115-124.
ZHANG Zekun,SONG Zhanping,CHENG Yun,et al. Acoustic emission characteristics and fracture response behavior of hard rock-like material under influence of loading rate[J]. Coal Geology & Exploration,2022,50(2):115-124.
|
[13] |
朱权洁,张尔辉,李青松,等. 岩石破坏失稳的声发射响应与损伤定量表征研究[J]. 中国安全生产科学技术,2020,16(1):92-98.
ZHU Quanjie,ZHANG Erhui,LI Qingsong,et al. Study on acoustic emission response and damage quantitative characterization of rock destruction and instability[J]. Journal of Safety Science and Technology,2020,16(1):92-98.
|
[14] |
李炜强,许沁舒,成功,等. 单轴压缩下砂岩微破裂演化力学行为研究[J]. 煤炭科学技术,2020,48(11):60-67.
LI Weiqiang,XU Qinshu,CHENG Gong,et al. Study on mechanical behavior of sandstone micro-fracture evolution under uniaxial compression test[J]. Coal Science and Technology,2020,48(11):60-67.
|
[15] |
刘健,王晓军,徐莎莎,等. 基于声发射RA−AF值识别不同岩爆倾向性灰岩破裂特征[J]. 金属矿山,2022(10):16-23.
LIU Jian,WANG Xiaojun,XU Shasha,et al. Identification of limestone fracture characteristics with different rockburst propensities based on acoustic emission RA-AF values[J]. Metal Mine,2022(10):16-23.
|
[16] |
纪洪广,张春瑞,张月征,等. 岩石材料破裂过程中声发射信号的应力状态及能量演化研究[J]. 中国矿业大学学报,2024,53(2):211-223.
JI Hongguang,ZHANG Chunrui,ZHANG Yuezheng,et al. Research on stress state and energy evolution of acoustic emission signal during rock materials fracture process[J]. Journal of China University of Mining & Technology,2024,53(2):211-223.
|
[17] |
陈炳瑞,冯夏庭,符启卿,等. 综合集成高精度智能微震监测技术及其在深部岩石工程中的应用[J]. 岩土力学,2020,41(7):2422-2431.
CHEN Bingrui,FENG Xiating,FU Qiqing,et al. Integration and high precision intelligence microseismic monitoring technology and its application in deep rock engineering[J]. Rock and Soil Mechanics,2020,41(7):2422-2431.
|
[18] |
黄杰,苏国韶,王拯扶,等. 基于声谱图特征的硬岩破裂类型识别方法[J]. 人民长江,2021,52(8):198-203.
HUANG Jie,SU Guoshao,WANG Zhengfu,et al. Recognition method of hard rock cracking types based on spectrograms characteristics[J]. Yangtze River,2021,52(8):198-203.
|
[19] |
CHANG Zhenghao,HE R,YU Yongsheng,et al. A two-stream convolution architecture for ESC based on audio feature distanglement[C]. Asian Conference on Machine Learning,New York,2023:153-168.
|
[20] |
HUANG Gao,LIU Zhuang,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:2261-2269.
|
[21] |
HU Jie,SHEN Li,SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
|
[22] |
YANG Huazhong,CHEN Zhongju,YANG Huajian,et al. Predicting coronary heart disease using an improved LightGBM model:performance analysis and comparison[J]. IEEE Access,2023,11:23366-23380. DOI: 10.1109/ACCESS.2023.3253885
|
[23] |
WANG Huajun,LI Genghui,WANG Zhenkun. Fast SVM classifier for large-scale classification problems[J]. Information Sciences,2023,642. DOI: 10.1016/j.ins.2023.119136.
|
[24] |
WU Di,FAN Zheyi,YI Shuhan. Crowd counting based on multi-level multi-scale feature[J]. Applied Intelligence,2023,53(19):21891-21901. DOI: 10.1007/s10489-023-04641-1
|
[1] | TAN Zhanglu, WANG Meijun. The essence, goal and technical method of intelligent coal mine data classification and coding[J]. Journal of Mine Automation, 2023, 49(1): 56-62, 72. DOI: 10.13272/j.issn.1671-251x.18032 |
[2] | TAN Liangjie, LI Yongfei, WU Qiong. Research on security access model of coal mine safety supervision cloud data based on blockchain[J]. Journal of Mine Automation, 2022, 48(5): 93-99. DOI: 10.13272/j.issn.1671-251x.2022030023 |
[3] | LIU Guopeng. Application of Inter Control controller in electrical control system of roadheader[J]. Journal of Mine Automation, 2014, 40(12): 89-92. DOI: 10.13272/j.issn.1671-251x.2014.12.024 |
[4] | ZHANG Xiao, LI Zhao-jun, WANG Hai-jun, WANG Feng, DENG Xian-ming. Power Supply Automation System of Coal Mine Based on ControlNet[J]. Journal of Mine Automation, 2009, 35(3): 51-55. |
[6] | JIA Peng-tao, SUN Tao, CHANG Xin-ta. The Application of WebGIS Control Component in Mine Ventilatio[J]. Journal of Mine Automation, 2005, 31(6): 38-39. |
[7] | SONG Bai. Information Management of Automatic Control System for Whole Mine[J]. Journal of Mine Automation, 2005, 31(1): 44-45. |
[8] | LI Jun-min, GONG Shang-fu. The Safety Control of Network Data[J]. Journal of Mine Automation, 2001, 27(1): 39-41. |
[9] | HAO Ying-ji. Data Monitoring System Based upon the Control of Serial Bus[J]. Journal of Mine Automation, 2000, 26(3): 32-33. |
[10] | DENG Shi-jie, ZUO Ming. Application of ComboBox Control in Dispatching Report Form Managing System[J]. Journal of Mine Automation, 1998, 24(2): 63-65. |