ZHANG Bing. Research on intelligent comprehensive management and control platform of coal mine[J]. Journal of Mine Automation, 2022, 48(S2): 65-69.
Citation: ZHANG Bing. Research on intelligent comprehensive management and control platform of coal mine[J]. Journal of Mine Automation, 2022, 48(S2): 65-69.

Research on intelligent comprehensive management and control platform of coal mine

More Information
  • Received Date: August 24, 2022
  • Available Online: September 14, 2023
  • [1]
    王国法,赵国瑞,任怀伟.智慧煤矿与智能化开采关键核心技术分析[J].煤炭学报,2019,44(1):34-41.
    [2]
    李首滨.智能化开采研究进展与发展趋势[J].煤炭科学技术,2019,47(10):102-110.
    [3]
    王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(8):1-36.
    [4]
    阙建立.智能矿山平台建设与实现[J].工矿自动化,2018,44(4):90-94.
    [5]
    韩安,陈晓晶,贺耀宜,等.智能矿山综合管控平台建设构思[J].工矿自动化,2021,47(8):7-14.
    [6]
    王国法,庞义辉,刘峰,等.智能化煤矿分类、分级评价指标体系[J].煤炭科学技术,2020,48(3):1-13.
    [7]
    庞义辉,王国法,任怀伟.智慧煤矿主体架构设计与系统平台建设关键技术[J].煤炭科学技术,2019,47(3):35-42.
    [8]
    陈佳林.煤矿安全生产大数据预警预测平台研究[J].电脑知识与技术,2018,14(1):26-27,34.
    [9]
    刘宏俊,李敏敏,黄敏."管控一体化"的煤矿安全与应急预警系统研究[J].轻工设计,2011(4):14-15.
    [10]
    谭章禄,吴琦,肖懿轩,等.智慧矿山信息可视化研究[J].工矿自动化,2020,46(1):26-31.
    [11]
    王丽敏,宋欣.煤矿安全生产风险预警研究[J].山东工业技术,2015(24):67.
    [12]
    毛善君,杨乃时,高彦清,等.煤矿分布式协同"一张图"系统的设计和关键技术[J].煤炭学报,2018,43(1):280-286.
    [13]
    李爽,薛广哲,方新秋,等.煤矿智能化安全保障体系及关键技术[J].煤炭学报,2020,45(6):2320-2330.
    [14]
    付贵祥,周红军,郭继茹.基于物联网的煤矿安全综合智能预警系统[J].工矿自动化,2014,40(4):99-101.
  • Related Articles

    [1]SUN Lei, SUN Shuxin, WANG Bowen, REN Hehe, PENG Hui. Research on network security service chain technology of data center in coal mine enterprise[J]. Journal of Mine Automation, 2022, 48(7): 149-154. DOI: 10.13272/j.issn.1671-251x.17926
    [2]WU Haotia. Discussion on network security protection of coal enterprises[J]. Journal of Mine Automation, 2021, 47(S2): 165-167.
    [3]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [4]LIU Dong, WANG Xiang-ju, YU Jing-jing. Design of Wireless Network Interface of Mine-used Camera Based on AR2524 Chip[J]. Journal of Mine Automation, 2011, 37(8): 122-125.
    [5]LAI Cheng-yu, YIN Kai. Design of Networked Sensor System Interface Based on Internet[J]. Journal of Mine Automation, 2008, 34(4): 116-118.
    [6]YU Zhong-an, LI Hui-bi. Integrated Technology of Industrial Control Network and Information Network[J]. Journal of Mine Automation, 2008, 34(1): 76-79.
    [7]SU Bai-shun, LIU Jia-lei, LI Chang-qing. Implementation Scheme of Adapter of External Network Interface[J]. Journal of Mine Automation, 2007, 33(5): 120-122.
    [8]PU Xin-zheng, LI Li. Design of PCI Interface Card of LonWorks Control Networks[J]. Journal of Mine Automation, 2007, 33(2): 94-96.
    [9]PAN Yu. The Security Study of Coal Mine Information System Based on Computer Network[J]. Journal of Mine Automation, 2005, 31(4): 28-31.
    [10]GU Jun , CHEN Zhi-guo , QIAN Jian-sheng , ZHANG Hong , ZHU Yi-cun . Application of Computer Network in Coal Sale Management Business[J]. Journal of Mine Automation, 2001, 27(5): 29-30.
  • Cited by

    Periodical cited type(10)

    1. 何勇华. 综采工作面液压支架直线度控制技术研究. 煤矿机械. 2025(03): 37-41 .
    2. 朱仲飞. 虚拟现实技术在中职物理电学实验中的应用研究. 科教导刊. 2025(08): 10-12 .
    3. 程醉,熊崎秀,任倩. 产业工人职业技能培训中数字孪生的价值意蕴、应用路径与实践审思. 当代职业教育. 2025(03): 94-101 .
    4. 逯晓臻,李战华,邬鑫. 基于模糊自适应PID的煤矿井下刮板输送机直线度自动控制. 自动化应用. 2024(03): 83-85+88 .
    5. 陈湘源. 综采工作面轨迹测量与直线度控制方法. 矿业研究与开发. 2024(03): 185-191 .
    6. 任保将,郭李刚,王书,张凯,杜锋. 基于MapleSim-MATLAB双向耦合技术的液压支架孪生体构建. 煤炭技术. 2024(07): 244-247 .
    7. 廖志伟,高龙,曹军,李晓围. 基于深度学习的刮板输送机异物检测方法研究. 中国煤炭. 2024(08): 165-170 .
    8. 闫振国,王延平,王艳. 基于NOSA的煤矿企业井下微环境风险评估研究. 技术与创新管理. 2024(05): 545-552 .
    9. 王云飞,赵继云,张鹤,王浩,张阳. 基于神经网络补偿的液压支架群推移系统直线度控制方法. 煤炭科学技术. 2024(11): 174-185 .
    10. 方新秋,陈宁宁,冯豪天,宋扬,梁敏富,吴刚,张璠,李家璇,李猛,乔富康,吴洋. 刮板输送机直线度光纤精准感知与调直关键技术. 采矿与安全工程学报. 2023(05): 1043-1056 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (173) PDF downloads (48) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return