ZHANG Qilong, ZHOU Bing, WANG Guoqiang, et al. Intelligent perception method for real-time airflow parameters in metal mines and its application[J]. Journal of Mine Automation,2025,51(2):121-130. DOI: 10.13272/j.issn.1671-251x.2024090057
Citation: ZHANG Qilong, ZHOU Bing, WANG Guoqiang, et al. Intelligent perception method for real-time airflow parameters in metal mines and its application[J]. Journal of Mine Automation,2025,51(2):121-130. DOI: 10.13272/j.issn.1671-251x.2024090057

Intelligent perception method for real-time airflow parameters in metal mines and its application

More Information
  • Received Date: September 14, 2024
  • Revised Date: February 04, 2025
  • Available Online: January 09, 2025
  • Real-time acquisition of global airflow parameters is a key technology for the intelligent control of the ventilation system in metal mines. Currently, AI-based prediction methods for airflow parameters are limited by data dependency, computational costs, and adaptability to different operating conditions. To address this issue, an intelligent perception method for global airflow parameters suitable for metal mines was proposed. First, a wind speed measurement device was used to monitor the average airflow velocity in the roadways in real-time. Monitoring points were strategically arranged, and an airflow parameter monitoring system was established to obtain key ventilation parameters such as air volume and air pressure. Then, based on the actual conditions of the ventilation system and a three-dimensional schematic diagram, a three-dimensional simulation system was developed and optimized using actual measured airflow data. The system simulated the airflow parameters of the mine under different fan operating conditions and natural wind pressure states. Next, based on the simulation data, a training and testing dataset for the AI algorithm model was constructed. Finally, the airflow information collected by the airflow parameter monitoring system was used as input for the AI algorithm model, enabling real-time perception of the global airflow distribution in the mine. Performance evaluation of the intelligent perception model was conducted using ventilation network calculation data. The results showed: ① the model's coefficient of determination (R2) was 0.998, the root mean square error was 0.215 9, the mean absolute error was 0.085, and the mean absolute percentage error was 1.89%. ② The model's predicted values closely aligned with the actual observed values, verifying the excellent performance of the multilayer perceptron (MLP) in airflow parameter prediction. ③ The model maintained its prediction accuracy when faced with different datasets, demonstrating good generalization ability. ④ The average error of the intelligent ventilation system's perception data was controlled within 5%, and the perceived underground airflow parameters were in close agreement with the actual measured values.

  • [1]
    董建军,谢郑权,杨嫡,等. 基于FBG传感器的回采巷道锚杆支护监测分析[J]. 安全与环境学报,2021,21(5):2013-2021.

    DONG Jianjun,XIE Zhengquan,YANG Di,et al. Monitoring and analysis of the bolt supporting for the mining roadways based on the FBG sensor[J]. Journal of Safety and Environment,2021,21(5):2013-2021.
    [2]
    刘尹霞,马恒,杨皓然. 矿井风速传感器可变模糊优选方案[J]. 辽宁工程技术大学学报(自然科学版),2017,36(10):1031-1035. DOI: 10.11956/j.issn.1008-0562.2017.10.005

    LIU Yinxia,MA Heng,YANG Haoran. Variable fuzzy optimal selection scheme for mine wind speed sensor[J]. Journal of Liaoning Technical University(Natural Science),2017,36(10):1031-1035. DOI: 10.11956/j.issn.1008-0562.2017.10.005
    [3]
    TANG Wenxuan,ZHANG Qilong,CHEN Yin,et al. An intelligent airflow perception model for metal mines based on CNN-LSTM architecture[J]. Process Safety and Environmental Protection,2024,187:1234-1247. DOI: 10.1016/j.psep.2024.05.044
    [4]
    LIU Yujiao,LIU Zeyi,GAO Ke,et al. Efficient graphical algorithm of sensor distribution and air volume reconstruction for a smart mine ventilation network[J]. Sensors,2022,22(6). DOI: 10.3390/S22062096.
    [5]
    周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225-2235.

    ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225-2235.
    [6]
    闫丽新,王宏浩. 基于无线网络技术的矿井无线管理信息系统的研究[J]. 煤炭技术,2013,32(12):149-151.

    YAN Lixin,WANG Honghao. Research of mine wireless management information system based on wireless network technology[J]. Coal Technology,2013,32(12):149-151.
    [7]
    高俊祥,高孝亮. 自动化控制技术在煤矿通风系统中的应用[J]. 煤矿安全,2011,42(11):81-84.

    GAO Junxiang,GAO Xiaoliang. Application of automatic control technology in coal mine ventilation system[J]. Safety in Coal Mines,2011,42(11):81-84.
    [8]
    REN Chen,CAO Shijie. Implementation and visualization of artificial intelligent ventilation control system using fast prediction models and limited monitoring data[J]. Sustainable Cities and Society,2020,52. DOI: 10.1016/j.scs.2019.101860.
    [9]
    潘竟涛,赵丹,李宗翔,等. 大明矿通风系统故障源诊断及风速传感器的布置[J]. 煤炭学报,2013,38(S1):153-158.

    PAN Jingtao,ZHAO Dan,LI Zongxiang,et al. Fault source diagnosis for ventilation system and air velocity transducer placement in Daming Mine[J]. Journal of China Coal Society,2013,38(S1):153-158.
    [10]
    赵丹,潘竟涛. 改进灵敏度矩阵的矿井通风故障源诊断及传感器布置研究[J]. 中国安全科学学报,2011,21(2):78-84. DOI: 10.3969/j.issn.1003-3033.2011.02.014

    ZHAO Dan,PAN Jingtao. Fault source diagnosis for mine ventilation based on improved sensitivity matrix and its wind speed sensor setting[J]. China Safety Science Journal,2011,21(2):78-84. DOI: 10.3969/j.issn.1003-3033.2011.02.014
    [11]
    杨战旗,郝天轩. 矿井通风安全智能监测监控系统研制[J]. 工矿自动化,2017,43(9):110-114.

    YANG Zhanqi,HAO Tianxuan. Development of intelligent monitoring and control system for mine ventilation safety[J]. Industry and Mine Automation,2017,43(9):110-114.
    [12]
    杨帅,撒占友,王相君,等. 基于环境监测的矿井通风三维仿真辅助决策系统设计[J]. 中国安全生产科学技术,2020,16(1):80-84.

    YANG Shuai,SA Zhanyou,WANG Xiangjun,et al. Design of 3D simulation assistant decision-making system for mine ventilation based on environmental monitoring[J]. Journal of Safety Science and Technology,2020,16(1):80-84.
    [13]
    栾王鹏. 矿井智能通风与实时监测控制系统[J]. 山东煤炭科技,2019,37(5):183-185,191. DOI: 10.3969/j.issn.1005-2801.2019.05.071

    LUAN Wangpeng. Mine intelligent ventilation and real-time monitoring and control system[J]. Shandong Coal Science and Technology,2019,37(5):183-185,191. DOI: 10.3969/j.issn.1005-2801.2019.05.071
    [14]
    李鸿蔚,王海宁,胡天寿,等. 金属矿井智能通风平台开发与应用[J]. 金属矿山,2024(9):181-189.

    LI Hongwei,WANG Haining,HU Tianshou,et al. Developmentand application of intelligent ventilation platform for metal mines[J]. Metal Mine,2024(9):181-189.
    [15]
    邵良杉,闻爽爽. 基于GRU神经网络的巷道平均风速获取研究[J]. 黄金科学技术,2021,29(5):709-718.

    SHAO Liangshan,WEN Shuangshuang. Research on obtaining average wind speed of roadway based on GRU neural network[J]. Gold Science and Technology,2021,29(5):709-718.
    [16]
    蒋仲安,杨向东. 基于环境参数协同预测风速的掘进面智能变频通风控制系统[J]. 金属矿山,2023(7):57-65.

    JIANG Zhong'an,YANG Xiangdong. Intelligent variable frequency ventilation control system for excavation face based on collaborative prediction of wind speed by environmental parameters[J]. Metal Mine,2023(7):57-65.
    [17]
    卞欢,刘剑,刘学,等. 基于GA−BP神经网络的巷道平均风速单点测试研究[J]. 中国安全生产科学技术,2023,19(5):57-64.

    BIAN Huan,LIU Jian,LIU Xue,et al. Research on single point test of average wind speed in roadway based on GA-BP neural network[J]. Journal of Safety Science and Technology,2023,19(5):57-64.
    [18]
    王海宁,厉志安. 一种矿井巷道平均风速的单点测控装置与方法:CN202010050498.8[P]. 2022-04-12.

    WANG Haining,LI Zhi'an. A single point measurement and control device and method for average wind speed in mine tunnels:CN202010050498.8[P]. 2022-04-12.
    [19]
    汪光鑫. 基于三维仿真系统的矿井风流调控技术及应用研究[D]. 赣州:江西理工大学,2014.

    WANG Guangxin. Research on mine airflow control technology and applications based on 3D simulation system[D]. Ganzhou:Jiangxi University of Science and Technology,2014.
    [20]
    万宇鹏,周远波,文捷,等. 基于神经网络的声学参数预测方法研究[J]. 中国测试,2024,50(2):167-171.

    WAN Yupeng,ZHOU Yuanbo,WEN Jie,et al. Research of acoustic parameter prediction method based on neural network[J]. China Measurement & Test,2024,50(2):167-171.
    [21]
    郑太雄,贺吉,张良斌. 基于LSTM神经网络的混合燃料HCCI发动机复杂工况下燃烧正时估计[J]. 仪器仪表学报,2020,41(10):100-110.

    ZHENG Taixiong,HE Ji,ZHANG Liangbin. Combustion timing estimation of the HCCI engine with mixed fuel under complex operating conditions based on LSTM neural network[J]. Chinese Journal of Scientific Instrument,2020,41(10):100-110.
    [22]
    傅兴宇,陈颖悦,陈玉明,等. 一种全连接粒神经网络分类方法[J]. 山西大学学报(自然科学版),2023,46(1):91-100.

    FU Xingyu,CHEN Yingyue,CHEN Yuming,et al. A classification method of fully connected granular neural network[J]. Journal of Shanxi University(Natural Science Edition),2023,46(1):91-100.
    [23]
    POLO-MENDOZA R,DUQUE J,MAŠÍN D. Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression:a case study of granular soils[J]. Case Studies in Construction Materials,2024,20. DOI: 10.1016/j.cscm.2023.e02800.
    [24]
    张振生,蔡景,张瑞,等. 航空发动机滑油消耗率计算与预测方法[J]. 南京航空航天大学学报,2024,56(4):668-676.

    ZHANG Zhensheng,CAI Jing,ZHANG Rui,et al. A calculation and prediction method of lubricating oil consumption rates for aeroengines[J]. Journal of Nanjing University of Aeronautics & Astronautics,2024,56(4):668-676.
    [25]
    韩意,姜逢源,田海庆,等. 基于多层感知机的坠物对海底管道损伤预测及可靠性分析[J]. 海洋湖沼通报,2020(6):37-43.

    HAN Yi,JIANG Fengyuan,TIAN Haiqing,et al. Damage prediction and reliability analysis of submarine pipelines subject to dropped objects based on multi-layer perceptron[J]. Transactions of Oceanology and Limnology,2020(6):37-43.
    [26]
    FARMANIFARD S,ASGHAR ALESHEIKH A,SHARIF M. A context-aware hybrid deep learning model for the prediction of tropical cyclone trajectories[J]. Expert Systems with Applications,2023,231. DOI: 10.1016/J.ESWA.2023.120701.
  • Related Articles

    [1]YAN Zhenguo, ZHANG Longcheng, WANG Yanping, CAO Yuqi, LIU Yitao, CHEN Chongwu, RUAN Jianing. Study on intelligent calibration of airway resistance in mine ventilation networks[J]. Journal of Mine Automation, 2025, 51(9): 124-132. DOI: 10.13272/j.issn.1671-251x.2025060004
    [2]LIU Xiangying. Research progress and prospects of intelligent mine ventilation[J]. Journal of Mine Automation, 2025, 51(4): 44-56. DOI: 10.13272/j.issn.1671-251x.18241
    [3]WU Fengliang, KOU Lu. Automatic recognition method of ventilator wind pressure performance curve for mine ventilation network calculation[J]. Journal of Mine Automation, 2024, 50(4): 103-111. DOI: 10.13272/j.issn.1671-251x.2023100036
    [4]LIU Guangwei, GUO Zhiqing, LIU Wei. Prediction model of slope deformation in open pit mines based on GJO-MLP[J]. Journal of Mine Automation, 2023, 49(9): 155-166. DOI: 10.13272/j.issn.1671-251x.2023070017
    [5]JIN Hongmei, DANG Qi, LI Hong'an, LI Zhanli. Dynamic evaluation of mine ventilation quality based on FCE-AHP[J]. Journal of Mine Automation, 2021, 47(9): 77-84.. DOI: 10.13272/j.issn.1671-251x.2021050061
    [6]LIU Kunlun, HAN Yaozhong, QIN Cunli, WANG Gang. Optimization design of mine regional ventilation system[J]. Journal of Mine Automation, 2021, 47(9): 25-31. DOI: 10.13272/j.issn.1671-251x.2021010081
    [7]ZHANG Ke, YANG Yingdi, LIU Xuetong, JIANG Chenglong. Construction and application of three-dimensional model of mine ventilation system[J]. Journal of Mine Automation, 2020, 46(2): 59-64. DOI: 10.13272/j.issn.1671-251x.2019070072
    [8]TAN Guowen. Visualized dynamic solution and early warning technology for ventilation network of complex mine[J]. Journal of Mine Automation, 2020, 46(2): 6-11. DOI: 10.13272/j.issn.1671-251x.17461
    [9]HE Min, WU Fusheng, . Simulation analysis of optimal regulation and control of ventilation system based on 3D model[J]. Journal of Mine Automation, 2016, 42(11): 41-44. DOI: 10.13272/j.issn.1671-251x.2016.11.010
    [10]ZHANG Pei-ling, LI Hui. Digital Speech Recognition System Based on Hybrid Model of CHMM and MLP[J]. Journal of Mine Automation, 2009, 35(12): 64-68.

Catalog

    Corresponding author: LIU Xin, 19a0601016@cjlu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (68) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return