ZHAO Kebao, LI Lingfeng, CHEN Zhuo, et al. Autonomous obstacle avoidance of underground coal mine transport robots based on intrinsic motivation reinforcement learning algorithm[J]. Journal of Mine Automation,2025,51(6):81-87. DOI: 10.13272/j.issn.1671-251x.2025040020
Citation: ZHAO Kebao, LI Lingfeng, CHEN Zhuo, et al. Autonomous obstacle avoidance of underground coal mine transport robots based on intrinsic motivation reinforcement learning algorithm[J]. Journal of Mine Automation,2025,51(6):81-87. DOI: 10.13272/j.issn.1671-251x.2025040020

Autonomous obstacle avoidance of underground coal mine transport robots based on intrinsic motivation reinforcement learning algorithm

More Information
  • Received Date: April 08, 2025
  • Revised Date: June 23, 2025
  • Available Online: June 26, 2025
  • Existing robot obstacle avoidance methods mostly rely on preset rules or external reward signals, making it difficult to adapt to the complex and variable underground environment in coal mines. To achieve autonomous and efficient obstacle avoidance for underground coal mine transport robots, an autonomous obstacle avoidance method for underground coal mine transport robot based on Intrinsic Motivation Reinforcement Learning (IM-RL) algorithm was proposed. The underground coal mine transport robot perceived external environmental information through visual sensors, calculated internal reward values for identifying external environmental attributes using a curiosity-driven intrinsic motivation orientation function, and computed external reward values for its action attributes using an external motivation reward function. By combining the reward weights of the intrinsic motivation orientation function and the external motivation reward function, it calculated a comprehensive reward value based on the robot's state before and after performing an action, forming the reward mechanism of the reinforcement learning algorithm. The robot's state was trained through a deep belief network, which encouraged the transport robot to actively explore unknown environments. Meanwhile, it used its own memory mechanism to store knowledge and experience, achieving autonomous obstacle avoidance through continuous learning and training. Autonomous obstacle avoidance experiments for the transport robot were conducted in static environments, dynamic environments, and actual underground coal mine environments. The results showed that robots using the IM-RL algorithm achieved the short obstacle avoidance paths and search times, demonstrating strong generalization and robustness.

  • [1]
    杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术[J]. 煤炭学报,2022,47(7):2844-2872.

    YANG Chunyu,ZHANG Xin. Key technologies of coal mine robots for environment perception and path planning[J]. Journal of China Coal Society,2022,47(7):2844-2872.
    [2]
    曹现刚,藏家松,吴旭东,等. 基于AE−RRT*的煤矸分拣机器人避障拣轨迹规划方法[J/OL]. 煤炭学报:1-12[2025-03-27]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1195.

    CAO Xiangang,ZANG Jiasong,WU Xudong,et al. Obstacle avoidance trajectory planning method for coal gangue sorting robot based on AE-RRT*[J/OL]. Journal of China Coal Society: 1-12[2025-03-27]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1195.
    [3]
    金将,王小平,臧铁钢,等. 基于改进蚁群算法的机器人避障路径规划[J]. 计算机工程与设计,2025,46(4):950-958.

    JIN Jiang,WANG Xiaoping,ZANG Tiegang,et al. Robot obstacle avoidance path planning based on improved ant colony algorithm[J]. Computer Engineering and Design,2025,46(4):950-958.
    [4]
    张彪,李永强. 基于动态寻优蚁群算法的移动机器人路径规划[J]. 仪器仪表学报,2025,46(3):74-85.

    ZHANG Biao,LI Yongqiang. Path planning of mobile robot based on the dynamic optimization ant colony algorithm[J]. Chinese Journal of Scientific Instrument,2025,46(3):74-85.
    [5]
    王欣,邓玉娇,常俊林. 矿井救灾机器人运动学分析及避障策略研究[J]. 煤矿机械,2013,34(2):69-71.

    WANG Xin,DENG Yujiao,CHANG Junlin. Kinematics analysis and obstacle avoidance strategy research of mine rescue robot[J]. Coal Mine Machinery,2013,34(2):69-71.
    [6]
    张辰,范永,李贻斌,等. 人工智能在煤矿机器人中的应用[J]. 中国煤炭,2021,47(1):93-98. DOI: 10.3969/j.issn.1006-530X.2021.01.014

    ZHANG Chen,FAN Yong,LI Yibin,et al. Application of artificial intelligence in coal mine robots[J]. China Coal,2021,47(1):93-98. DOI: 10.3969/j.issn.1006-530X.2021.01.014
    [7]
    巩固,朱华. 基于目标识别与避障的煤矿救援机器人自主行走[J]. 南京理工大学学报,2022,46(1):32-39.

    GONG Gu,ZHU Hua. Autonomous walking of coal mine rescue robot based on target recognition and obstacle avoidance[J]. Journal of Nanjing University of Science and Technology,2022,46(1):32-39.
    [8]
    李芳威,鲍久圣,王陈,等. 基于LD改进Cartographer建图算法的无人驾驶无轨胶轮车井下SLAM自主导航方法及试验[J]. 煤炭学报,2024,49(增刊2):1271-1284.

    LI Fangwei,BAO Jiusheng,WANG Chen,et al. Unmanned trackless rubber wheeler based on LD improved Cartographer mapping algorithm underground SLAM autonomous navigation method and test[J]. Journal of China Coal Society,2024,49(S2):1271-1284.
    [9]
    张立亚,李晨鑫,刘斌,等. 基于子图像分割映射点云空间的机器人避障算法[J]. 煤炭科学技术,2024,52(增刊2):368-374.

    ZHANG Liya,LI Chenxin,LIU Bin,et al. Obstacle avoidance algorithm based on sub-image segmentation and mapping point cloud space[J]. Coal Science and Technology,2024,52(S2):368-374.
    [10]
    宋秦中,胡华亮. 基于CNN算法的井下无人驾驶无轨胶轮车避障方法[J]. 金属矿山,2023(10):168-174.

    SONG Qinzhong,HU Hualiang. Obstacle avoidance method for underground unmanned trackless rubber-tyred vehicle based on CNN algorithm[J]. Metal Mine,2023(10):168-174.
    [11]
    郭爱军,杨腾,潘子宇. 动态环境下无人矿车速度规划与避障方法[J]. 矿业研究与开发,2024,44(7):239-245.

    GUO Aijun,YANG Teng,PAN Ziyu. Speed planning and obstacle avoidance method for unmanned mining vehicle in dynamic environment[J]. Mining Research and Development,2024,44(7):239-245.
    [12]
    张可琨,鲍久圣,艾俊伟,等. 基于改进A*与DWA算法的井下搬运机器人自主行走路径规划[J]. 煤炭科学技术,2024,52(11):197-213. DOI: 10.12438/cst.2024-0747

    ZHANG Kekun,BAO Jiusheng,AI Junwei,et al. Autonomous walking path planning of underground handling robot based on improved A* and DWA algorithm[J]. Coal Science and Technology,2024,52(11):197-213. DOI: 10.12438/cst.2024-0747
    [13]
    YANG Hongxia,TENG Xingqiang. Mobile robot path planning based on enhanced dynamic window approach and improved a algorithm[J]. Journal of Robotics,2022. DOI: 10.1155/2022/2183229.
    [14]
    XU Zhenyang,YUAN Wei. Mobile robot path planning based on fusion of improved A* algorithm and adaptive DWA algorithm[J]. Journal of Physics:Conference Series,2022,2330(1). DOI: 10.1088/1742-6596/2330/1/012003.
    [15]
    彭继国,张波,孙凌飞,等. 井下移动机器人智能视觉避障研究[J]. 工矿自动化,2020,46(9):51-56,63.

    PENG Jiguo,ZHANG Bo,SUN Lingfei,et al. Research on intelligent visual obstacle avoidance of underground mobile robot[J]. Industry and Mine Automation,2020,46(9):51-56,63.
    [16]
    王利民,孙瑞峰,翟国栋,等. 融合改进A*算法与动态窗口法的煤矿足式机器人路径规划[J]. 工矿自动化,2024,50(6):112-119.

    WANG Limin,SUN Ruifeng,ZHAI Guodong,et al. Path planning of coal mine foot robot by integrating improved A* algorithm and dynamic window approach[J]. Journal of Mine Automation,2024,50(6):112-119.
    [17]
    鲁志,刘莹煌,张绪坤,等. 融合A*与DWA算法的移动机器人动态避障研究[J]. 电子测量技术,2025,48(8):34-45.

    LU Zhi,LIU Yinghuang,ZHANG Xukun,et al. Research on mobile robot dynamic obstacle avoidance by fusing A* and DWA algorithms[J]. Electronic Measurement Technology,2025,48(8):34-45.
    [18]
    HARLOW H F. Learning and satiation of response in intrinsically motivated complex puzzle performance by monkeys[J]. Journal of Comparative and Physiological Psychology,1950,43(4):289-294. DOI: 10.1037/h0058114
    [19]
    李福进,张俊琴,任红格. 基于仿生学内在动机的Q学习算法移动机器人路径规划研究[J]. 现代电子技术,2019,42(17):133-137.

    LI Fujin,ZHANG Junqin,REN Hongge. Research on mobile robot path planning by Q-learning algorithm based on bionics intrinsic motivation[J]. Modern Electronics Technique,2019,42(17):133-137.
    [20]
    阮晓钢,张家辉,黄静,等. 一种结合内在动机理论的移动机器人环境认知模型[J]. 控制与决策,2021,36(9):2211-2217.

    RUAN Xiaogang,ZHANG Jiahui,HUANG Jing,et al. An environment cognition model combined with intrinsic motivation for mobile robots[J]. Control and Decision,2021,36(9):2211-2217.
    [21]
    曾俊杰,秦龙,徐浩添,等. 基于内在动机的深度强化学习探索方法综述[J]. 计算机研究与发展,2023,60(10):2359-2382. DOI: 10.7544/issn1000-1239.202220388

    ZENG Junjie,QIN Long,XU Haotian,et al. Exploration approaches in deep reinforcement learning based on intrinsic motivation:a review[J]. Journal of Computer Research and Development,2023,60(10):2359-2382. DOI: 10.7544/issn1000-1239.202220388
  • Related Articles

    [1]ZHU Hongbo, YIN Hongliang. Research on path planning for coal mine rescue robots[J]. Journal of Mine Automation, 2024, 50(12): 145-154. DOI: 10.13272/j.issn.1671-251x.2024040002
    [2]ZHU Hongbo, HUA Rong. Path planning method for coal mine inspection robot[J]. Journal of Mine Automation, 2024, 50(7): 107-114. DOI: 10.13272/j.issn.1671-251x.2024040033
    [3]MAO Qinghua, YAO Lijie, XUE Xusheng. Path planning algorithm for tracked directional drilling rigs in coal mines[J]. Journal of Mine Automation, 2024, 50(2): 18-27. DOI: 10.13272/j.issn.1671-251x.2023080085
    [4]JIANG Yuanyuan, FENG Xueyan. Path planning of coal mine rescue robot based on improved A* algorithm[J]. Journal of Mine Automation, 2023, 49(8): 53-59. DOI: 10.13272/j.issn.1671-251x.2022120027
    [5]XUE Guanghui, LIU Shuang, WANG Zijie, LI Yanan. A path-planning method for coal mine robot based on improved probability road map algorithm[J]. Journal of Mine Automation, 2023, 49(6): 175-181. DOI: 10.13272/j.issn.1671-251x.18116
    [6]HUANG Jinfeng, ZHANG Jianxi, YU Jiangtao, MIAO Shuji. Research on path planning of parallel gangue selection robot[J]. Journal of Mine Automation, 2022, 48(8): 26-32, 42. DOI: 10.13272/j.issn.1671-251x.2022040073
    [7]ZHU Ziqi, LI Chuangye, DAI Wei. Path planning of coal gangue sorting robot based on G-RRT* algorithm[J]. Journal of Mine Automation, 2022, 48(3): 55-62. DOI: 10.13272/j.issn.1671-251x.2021090015
    [8]HUANG Yourui, LI Jing, HAN Tao, XU Shanyong. Research on path planning algorithm of robot in coal mine based on membrane computing[J]. Journal of Mine Automation, 2021, 47(11): 22-29. DOI: 10.13272/j.issn.1671-251x.17847
    [9]LI Xiaojing, YU Dongman. Research on the optimal path planning of coal exploration and rescue robot[J]. Journal of Mine Automation, 2017, 43(3): 24-29. DOI: 10.13272/j.issn.1671-251x.2017.03.006
    [10]QIU Wei-jiang, SONG Zhi-qiang, YUAN Jia-bin. An optimal path planning method for mobile robot[J]. Journal of Mine Automation, 2013, 39(10): 86-89. DOI: 10.7526/j.issn.1671-251X.2013.10.022

Catalog

    Article Metrics

    Article views (44) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return