HUANG Yourui, LI Jing, HAN Tao, XU Shanyong. Research on path planning algorithm of robot in coal mine based on membrane computing[J]. Journal of Mine Automation, 2021, 47(11): 22-29. DOI: 10.13272/j.issn.1671-251x.17847
Citation: HUANG Yourui, LI Jing, HAN Tao, XU Shanyong. Research on path planning algorithm of robot in coal mine based on membrane computing[J]. Journal of Mine Automation, 2021, 47(11): 22-29. DOI: 10.13272/j.issn.1671-251x.17847

Research on path planning algorithm of robot in coal mine based on membrane computing

More Information
  • Received Date: September 07, 2021
  • Revised Date: November 04, 2021
  • The existing path planning algorithm of robot in coal mine uses fixed step size and serial mode to generate path, which has problems such as low success rate, poor real-time performance and low efficiency.Combining membrane computing(MC)with Informed RRT* algorithm, this study proposes a path planning algorithm of robot in coal mine, namely MC-IRRT* algorithm.The algorithm is divided into two stages, namely fast connectivity and path optimization.In the fast connectivity stage, the multi-step cellular membrane structure is constructed, and the step size is adjusted according to the size of the space area.The large step search is used in the area with larger feasible space to accelerate the search speed.The small step search is used in the narrow space to make the search space more refined and improve the success rate of the narrow space path search.In the path optimization stage, a multi-sampling cellular membrane structure is constructed, and multiple basic membranes are calculated in parallel, and the shortest feasible path is searched in parallel in multiple elliptical areas at the same time to save time and improve the efficiency of path optimization.The simple scene experimental results show that compared with Informed RRT* algorithm, the search efficiency of MC-IRRT* algorithm in the fast connectivity stage and the path optimization phase is increased by 76% and 40% respectively.The complex scene experimental results show that the path planning of RRT* algorithm and Informed RRT* algorithm fails, and both PQ-RRT* algorithm and MC-IRRT* algorithm can find feasible paths successfully.Compared with PQ-RRT* algorithm, the rate of MC-IRRT* algorithm is increased by 12.79%, and the planned path length is shortened by 8.18%.The MC-IRRT* algorithm can not only pass through narrow feasible areas quickly, but also can choose to use smaller step at the turning point of the path so as to make the path smoother.
  • [1]
    杨林,马宏伟,王岩,等.煤矿井下移动机器人运动规划方法研究[J].工矿自动化,2020,46(6):23-30.

    YANG Lin,MA Hongwei,WANG Yan,et al.Research on motion planning method of underground mobile robot[J].Industry and Mine Automation,2020,46(6):23-30.
    [2]
    袁晓明,郝明锐.煤矿辅助运输机器人关键技术研究[J].工矿自动化,2020,46(8):8-14.

    YUAN Xiaoming,HAO Mingrui.Research on key technologies of coal mine auxiliary transportation robot[J].Industry and Mine Automation,2020,46(8):8-14.
    [3]
    郑亮,孙龙龙,陈双.一种改进工业自动导引车路径规划算法[J].科学技术与工程,2021,21(16):6758-6763.

    ZHENG Liang,SUN Longlong,CHEN Shuang.An improved industrial automated guided vehicle path planning algorithm[J].Science Technology and Engineering,2021,21(16):6758-6763.
    [4]
    MACWAN A,VILELA J,NEJAT G,et al.A multirobot path-planning strategy for autonomous wilderness search and rescue[J].IEEE Transactions on Cybernetics,2015,45(9):1784-1797.
    [5]
    LIU L,LIN J,YAO J,et al.Path planning for smart car based on dijkstra algorithm and dynamic window approach[J].Wireless Communications and Mobile Computing,2021,2021(4):1-12.
    [6]
    李鹏,何宸宇,刘琪,等.基于A*扩展自适应蚁群算法的移动机器人路径规划[J].湖南科技大学学报(自然科学版),2021,36(2):85-92.

    LI Peng,HE Chenyu,LIU Qi,et al.Research on path planning of mobile robot based on A-star extended adaptive ant colony algorithm[J].Journal of Hunan University of Science & Technology(Natural Science Edition),2021,36(2):85-92.
    [7]
    李得伟,韩宝明,韩宇.一种逆向改进型A*路径搜索算法[J].系统仿真学报,2007,19(22):5175-5177.

    LI Dewei,HAN Baoming,HAN Yu.Conversely improved A star route search algorithm[J].Journal of System Simulation,2007,19(22):5175-5177.
    [8]
    OH K S,KIM E T,CHO Y W.Path planning of a robot manipulator using retrieval RRT strategy[J].International Journal of Fuzzy Logic and Intelligent Systems,2007,7(2):138-142.
    [9]
    WEI Kun,REN Bingyin.A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm[J].Sensors,2018,18(2):571.
    [10]
    林娜,张亚伦.自适应RRT无人机航路规划算法研究与仿真[J].计算机仿真,2015,32(1):73-77.

    LIN Na,ZHANG Yalun.Research and simulation on adaptive RRT algorithm for UAVs path planning[J].Computer Simulation,2015,32(1):73-77.
    [11]
    KARAMAN S,FRAZZOLI E.Sampling-based algorithms for optimal motion planning[J].The International Journal of Robotics Research,2011,30(7):846-894.
    [12]
    GAMMELL J D,SRINIVASA S S,BARFOOT T D.Informed RRT*:optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//International Conference on Intelligent Robots and Systems,Chicago,2014:2997-3004.
    [13]
    冯来春,梁华为,杜明博,等.基于A*引导域的RRT智能车辆路径规划算法[J].计算机系统应用,2017,26(8):127-133.

    FENG Laichun,LIANG Huawei,DU Mingbo,et al.Guiding-area RRT path planning algorithm based on A* for intelligent vehicle[J].Computer Systems & Applications,2017,26(8):127-133.
    [14]
    XI Yingqi,SHEN Wei,ZHANG Wen,et al.A real-time dynamic path planning method combining artificial potential field method and biased target RRT algorithm[C]//The 2nd Asia Conference on Automation Engineering,Chengdu,2020:012015.
    [15]
    HUANG J,SUN W.A method of feasible trajectory planning for UAV formation based on bi-directional fast search tree[J].Optik,2020,221:165213.
    [16]
    LI Y,WEI W,GAO Y,et al.PQ-RRT*:an improved path planning algorithm for mobile robots[J].Expert Systems with Applications,2020,152:113425.
    [17]
    LUO Siyu,LIU Shirong,ZHANG Botao,et al.Path planning algorithm based on Gb informed RRT* with heuristic bias[C]//36th Chinese Control Conference,Dalian,2017:297-302.
  • Related Articles

    [1]ZHANG Zhiwei, MA Xiaoping, BAI Yateng, LEI Zhenya, LI Jiaming. Local path planning for mobile robots based on improved OpenPlanner algorithm[J]. Journal of Mine Automation, 2023, 49(12): 40-46. DOI: 10.13272/j.issn.1671-251x.18151
    [2]SHI Xiangyu, SI Lei, WANG Zhongbin, WEI Dong, GU Jinheng. Forward simulation of electromagnetic waves in coal gangue model based on improved bidirectional peak-valley search algorithm[J]. Journal of Mine Automation, 2023, 49(10): 87-95. DOI: 10.13272/j.issn.1671-251x.18090
    [3]MENG Feng, JING Cheng. Application of full-text search engine in coal mine operation and maintenance system[J]. Journal of Mine Automation, 2019, 45(3): 103-108. DOI: 10.13272/j.issn.1671-251x.2018110071
    [4]JIN Zujin, CHENG Gang, GUO Feng, WEI Haora. Optimal path planning algorithm for coal mine search and rescue robot[J]. Journal of Mine Automation, 2018, 44(10): 24-28. DOI: 10.13272/j.issn.1671-251x.2018030015
    [5]CHENG Deqiang, LIU Jie, GUO Zheng. An algorithm of side information generation of coal mine underground video sequence based on full search[J]. Journal of Mine Automation, 2014, 40(10): 19-22. DOI: 10.13272/j.issn.1671-251x.2014.10.006
    [6]FU Bo-na, CHENG Yong. Application research of modeling method based on neural networks with parallel chaotic search[J]. Journal of Mine Automation, 2013, 39(9): 87-91. DOI: 10.7526/j.issn.1671-251X.2013.09.023
    [7]CHEN Chuan-hu, LIANG Hong, ZOU De-xuan, LIU Hai-kuan. Application of novel global harmony search algorithm in economical dispatching[J]. Journal of Mine Automation, 2013, 39(7): 69-72.
    [8]CHEN Ke, YANG Wen-hua. Fuzzy Energy-saving Control of Induction Motor Based on On-line Searching[J]. Journal of Mine Automation, 2010, 36(12): 58-61.
    [9]YANG Lin-xia~, FU Zhou-xing~, DIAO Yu-qing~. Research of Paralleled Active Power Filter Based on DSP[J]. Journal of Mine Automation, 2008, 34(1): 21-24.
    [10]LI Wei, LIN Wei-guo, MENG Fan-xi. One Machine, More Scale Nucleonic Scale Weighins System with Dual CPU Parallel Processing[J]. Journal of Mine Automation, 1995, 21(2): 50-53.

Catalog

    Article Metrics

    Article views (160) PDF downloads (31) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return