YANG Jian, SHU Longyong, ZHANG Shulin, et al. Research on a PCA-transformer-based prediction algorithm for gas concentration in working face[J]. Journal of Mine Automation,2025,51(5):1-7. DOI: 10.13272/j.issn.1671-251x.2024110032
Citation: YANG Jian, SHU Longyong, ZHANG Shulin, et al. Research on a PCA-transformer-based prediction algorithm for gas concentration in working face[J]. Journal of Mine Automation,2025,51(5):1-7. DOI: 10.13272/j.issn.1671-251x.2024110032

Research on a PCA-transformer-based prediction algorithm for gas concentration in working face

More Information
  • Received Date: November 10, 2024
  • Revised Date: May 15, 2025
  • Available Online: May 12, 2025
  • Current research on gas concentration prediction in working faces of coal mines often suffers from limited feature dimensions and small dataset sizes, making it difficult to extract long-term fluctuation patterns from large-scale time-series data. To address this issue, this study proposes a Principal Component Analysis (PCA)-Transformer-based prediction algorithm for gas concentration in working faces. Firstly, raw gas concentration-related data was cleaned and normalized using min-max scaling. Then, PCA was applied to reduce the dimensionality of seven influencing factors (methane concentration at the upper corner, return airflow methane concentration, oxygen concentration, carbon monoxide concentration, temperature, net flow rate, and wind speed), effectively eliminating weakly correlated features. Finally, the processed training set was fed into a Transformer model, where the encoder and decoder extracted intrinsic patterns and features of gas concentration variations. Using monitoring data from working face 224 of a high-gas mine in Tongchuan as a sample, the PCA-Transformer model was compared with Long Short-Term Memory (LSTM), PCA-Long Short-Term Memory (PCA-LSTM), and Transformer models. The results show that: ① The PCA-Transformer model achieves a Mean Absolute Error (MAE) of 0.020 3, Mean Squared Error (MSE) of 0.047 2, and a runtime of 86 seconds, meeting the accuracy and timeliness requirements for gas concentration prediction in coal production. ② Compared to LSTM, PCA-LSTM, and Transformer models, the PCA-Transformer model better fits gas concentration trends, effectively identifies peak and trough sequences, and requires the least computational time, demonstrating its superior performance.

  • [1]
    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283-1305.

    XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283-1305.
    [2]
    安明燕,杜泽生,张连军. 2007—2010年我国煤矿瓦斯事故统计分析[J]. 煤矿安全,2011,42(5):177-179.

    AN Mingyan,DU Zesheng,ZHANG Lianjun. Statistical analysis of coal mine gas accidents in China from 2007 to 2010[J]. Safety in Coal Mines,2011,42(5):177-179.
    [3]
    齐黎明,卢云婷,关联合,等. 煤与瓦斯突出预测敏感指标确定方法探索及应用[J]. 矿业安全与环保,2021,48(3):85-89.

    QI Liming,LU Yunting,GUAN Lianhe,et al. Exploration and application of determination method of sensitive index for prediction of coal and gas outburst[J]. Mining Safety & Environmental Protection,2021,48(3):85-89.
    [4]
    刘莹,杨超宇. 基于多因素的LSTM瓦斯浓度预测模型[J]. 中国安全生产科学技术,2022,18(1):108-113.

    LIU Ying,YANG Chaoyu. LSTM gas concentration prediction model based on multiple factors[J]. Journal of Safety Science and Technology,2022,18(1):108-113.
    [5]
    张震,朱权洁,李青松,等. 基于Keras长短时记忆网络的矿井瓦斯浓度预测研究[J]. 安全与环境工程,2021,28(1):61-67,78.

    ZHANG Zhen,ZHU Quanjie,LI Qingsong,et al. Prediction of mine gas concentration in heading face based on Keras long short time memory network[J]. Safety and Environmental Engineering,2021,28(1):61-67,78.
    [6]
    吴奉亮,霍源,高佳南. 基于随机森林回归的煤矿瓦斯涌出量预测方法[J]. 工矿自动化,2021,47(8):102-107.

    WU Fengliang,HUO Yuan,GAO Jia'nan. Coal mine gas emission prediction method based on random forest regression[J]. Industry and Mine Automation,2021,47(8):102-107.
    [7]
    吴兆法,吴响,钱建生. 基于插值梯形模糊信息粒化的瓦斯浓度趋势预测[J]. 工矿自动化,2014,40(12):31-36.

    WU Zhaofa,WU Xiang,QIAN Jiansheng. Trend prediction of gas concentration based on interpolation trapezoidal fuzzy information granulation[J]. Industry and Mine Automation,2014,40(12):31-36.
    [8]
    梁运培,栗小雨,李全贵,等. 基于CS−LSTM的工作面瓦斯浓度智能预测研究[J]. 矿业安全与环保,2022,49(4):80-86.

    LIANG Yunpei,LI Xiaoyu,LI Quangui,et al. Research on intelligent prediction of gas concentration in working face based on CS-LSTM[J]. Mining Safety & Environmental Protection,2022,49(4):80-86.
    [9]
    荣统瑞,侯恩科,夏冰冰. 基于二次分解和BO−BiLSTM组合模型的采煤工作面瓦斯涌出量预测方法研究[J]. 煤矿安全,2024,55(5):83-92.

    RONG Tongrui,HOU Enke,XIA Bingbing. Research on prediction method of coal mining face gas outflow based on quadratic decomposition and BO-BiLSTM combination model[J]. Safety in Coal Mines,2024,55(5):83-92.
    [10]
    王媛彬,李媛媛,韩骞,等. 基于PCA−BO−XGBoost的矿井回采工作面瓦斯涌出量预测[J]. 西安科技大学学报,2022,42(2):371-379.

    WANG Yuanbin,LI Yuanyuan,HAN Qian,et al. Gas emission prediction of the stope in coal mine based on PCA-BO-XGBoost[J]. Journal of Xi'an University of Science and Technology,2022,42(2):371-379.
    [11]
    施式亮,李润求,罗文柯. 基于EMD−PSO−SVM的煤矿瓦斯涌出量预测方法及应用[J]. 中国安全科学学报,2014,24(7):43-49.

    SHI Shiliang,LI Runqiu,LUO Wenke. Method for predicting coal mine gas emission based on EMD-PSO-SVM and its application[J]. China Safety Science Journal,2014,24(7):43-49.
    [12]
    撒占友,刘岩,刘杰. 基于EMD−ARMA的矿井瓦斯涌出量预测[J]. 煤矿安全,2016,47(7):174-176,181.

    SA Zhanyou,LIU Yan,LIU Jie. Mine gas emission prediction based on EMD-ARMA model[J]. Safety in Coal Mines,2016,47(7):174-176,181.
    [13]
    王永文. 基于HHT−CS−ELM的瓦斯涌出量时序预测[J]. 煤矿安全,2017,48(9):5-8.

    WANG Yongwen. Prediction of time series for gas emission quantity based on HHT-CS-ELM characteristics[J]. Safety in Coal Mines,2017,48(9):5-8.
    [14]
    林海飞,刘时豪,周捷,等. 基于STL−EEMD−GA-SVR的采煤工作面瓦斯涌出量预测方法及应用[J]. 煤田地质与勘探,2022,50(12):131-141. DOI: 10.12363/issn.1001-1986.22.04.0218

    LIN Haifei,LIU Shihao,ZHOU Jie,et al. Prediction method and application of gas emission from mining workface based on STL-EEMD-GA-SVR[J]. Coal Geology & Exploration,2022,50(12):131-141. DOI: 10.12363/issn.1001-1986.22.04.0218
    [15]
    聂雅琳,王海军,石念峰,等. 融合深度卷积神经网络和Swin Transformer的露天矿遥感图像超分辨率重建[J]. 金属矿山,2024(12):240-245.

    NIE Yalin,WANG Haijun,SHI Nianfeng,et al. Super-resolution reconstruction for remote sensing images of open-pit coal mines based on CNN and Swin Transformer[J]. Metal Mine,2024(12):240-245.
    [16]
    骆钊,吴谕侯,朱家祥,等. 基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测[J]. 电网技术,2023,47(9):3527-3537.

    LUO Zhao,WU Yuhou,ZHU Jiaxiang,et al. Wind power forecasting based on multi-scale time series block auto-encoder transformer neural network model[J]. Power System Technology,2023,47(9):3527-3537.
    [17]
    WU Zhaohua,HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41. DOI: 10.1142/S1793536909000047
    [18]
    李丹辉. 基于改进长短期记忆网络的煤矿瓦斯涌出量预测研究[D]. 太原:太原科技大学,2020.

    LI Danhui. Research on prediction of gas emission in coal mine based on improved LSTM[D]. Taiyuan:Taiyuan University of Science and Technology,2020.
    [19]
    周月. 基于改进SAE和Bi−LSTM的滚动轴承RUL预测方法研究[D]. 哈尔滨:哈尔滨理工大学,2020.

    ZHOU Yue. Research on RUL prediction method of a rolling bearing based on improved SAE and Bi-LSTM[D]. Harbin:Harbin University of Science and Technology,2020.
  • Related Articles

    [1]JIAO Biao, MA Hongyuan, HAO Baoli, YANG Huadong, SHI Xingxing, ZHANG Huaizhong, DONG Zhe. Research on load reduction and rockburst prevention technology in areas with square composite structures of extra-thick coal seams under strong impact[J]. Journal of Mine Automation, 2025, 51(4): 146-152. DOI: 10.13272/j.issn.1671-251x.2025020035
    [2]ZHANG Liya, MA Zheng, HAO Bonan, LI Biao. Interference monitoring technology for mine-used 5G communication signal transmission[J]. Journal of Mine Automation, 2024, 50(11): 62-69. DOI: 10.13272/j.issn.1671-251x.204090054
    [3]MA Zheng, YANG Dashan, ZHANG Tianxiang. Multi-personnel underground trajectory prediction method based on Social Transformer[J]. Journal of Mine Automation, 2024, 50(5): 67-74. DOI: 10.13272/j.issn.1671-251x.2023110084
    [4]WANG Shubin, WANG Xu, YAN Shiping, WANG Ke. Transformer based time series prediction method for mine internal caused fire[J]. Journal of Mine Automation, 2024, 50(3): 65-70, 91. DOI: 10.13272/j.issn.1671-251x.2023100084
    [5]LI Zexi. Ensemble learning mine pressure prediction method based on variable time series shift Transformer-LSTM[J]. Journal of Mine Automation, 2023, 49(7): 92-98. DOI: 10.13272/j.issn.1671-251x.18142
    [6]CHEN Qing, LIU Xiaowen. Model space dimensionality reduction method of mine seismic wave velocity inversio[J]. Journal of Mine Automation, 2018, 44(12): 54-60. DOI: 10.13272/j.issn.1671-251x.2018090054
    [7]ZHAO Qian, XU Xinya. Monitoring method of slope based on fringe projection and two-dimensional principal component analysis[J]. Journal of Mine Automation, 2015, 41(11): 56-59. DOI: 10.13272/j.issn.1671-251x.2015.11.014
    [8]TAO Fengyuan, ZHANG Dong, DONG Xinsheng, WANG Shirong. Analysis of influence factors of polarization spectrum method on state detection of transformer oil-paper insulatio[J]. Journal of Mine Automation, 2014, 40(10): 33-36. DOI: 10.13272/j.issn.1671-251x.2014.10.010
    [9]SONG Wei, ZHANG Xin, WANG Lei. Optimization Design of Elastomer Structure of Strain Type Six-dimensional Pressure Sensor Based on Orthogonal Test[J]. Journal of Mine Automation, 2009, 35(10): 60-62.
    [10]ZOU Yi-wen, LI Jin-he. Application of Circuit Transformer Bank in Small-scale Heat Power Plant in Coal Mine and Its Protection Distributio[J]. Journal of Mine Automation, 2001, 27(1): 18-20.

Catalog

    Article Metrics

    Article views (81) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return