Citation: | YANG Guiru, LI Hongping, ZHOU Yu, et al. Numerical simulation study on the pressure relief and anti-scour effects of multi-seam coal mining[J]. Journal of Mine Automation,2025,51(5):96-104. DOI: 10.13272/j.issn.1671-251x.2025020014 |
Existing studies on pressure relief and anti-scour in multi-seam coal mining mostly rely on simplified numerical models to analyze the mining-induced stress distribution of multiple coal seams, which makes it difficult to realistically reflect the complex geological conditions and the physical-mechanical interactions between coal seams. Moreover, there is a lack of systematic characterization of the combined influence mechanisms of goaf areas and remaining coal pillars. To address these issues, based on the engineering background of mining four coal seams in Kuangou Coal Mine, this study used numerical simulation to investigate the impact of complex spatial structures such as multi-seam goaf areas and remaining coal pillars on the mining of underlying coal seams. The results showed that: when mining a single coal seam, there was obvious stress concentration below the remaining coal pillar, and a significant pressure relief effect below the goaf area. Under the superimposed influence of mining multiple seams, the stress concentration at the overlapping boundaries of multiple goaf areas further increased. If there were goaf areas above and below the remaining coal pillar, its stress concentration significantly decreased, resulting in a stress reduction in the coal seam below the projection of the remaining pillar, thus causing pressure relief. The protective pressure relief effect of goaf areas and the stress concentration effect of coal pillars decreased as the spacing between coal seams increased. According to the coal seam stress concentration coefficient, the coal seam protection pressure relief zones and stress concentration zones were delineated: when the stress concentration coefficient was (0,1], (1,2], (2,3], and (3, ∞), they corresponded respectively to pressure relief or no influence zone, weak influence zone, moderate influence zone, and strong influence zone. Electromagnetic radiation and acoustic emission energy in the delineated areas were tested using an electroseismic vector monitoring instrument, and the results verified the accuracy of the delineated pressure relief and stress concentration zones.
[1] |
卢安良. 煤层群下行开采扰动作用及诱冲效应研究[D]. 徐州:中国矿业大学,2022.
LU Anliang. Research on the disturbance and induced flushing effect of downward mining in coal seam groups[D]. Xuzhou:China University of Mining and Technology,2022.
|
[2] |
李杨,王建鹏,陈一鼎,等. 多煤层开采中间岩层对覆岩移动的影响研究[J]. 煤炭科学技术,2020,48(4):246-255.
LI Yang,WANG Jianpeng,CHEN Yiding,et al. Study on effect of interburden on movement of overburden in multiple coal seams[J]. Coal Science and Technology,2020,48(4):246-255.
|
[3] |
张夏彭,王凯,周爱桃,等. 中远距离煤层群保护层多次开采卸压效果研究[J]. 煤矿安全,2025,56(5):100-113.
ZHANG Xiapeng,WANG Kai,ZHOU Aitao,et al. Study on pressure relief effect of multiple mining of protective layer in medium and long distance coal seam group[J]. Safety in Coal Mines,2025,56(5):100-113.
|
[4] |
李春元,王泓博,石瑶玉. 上覆遗留区段煤柱对下伏煤层开采扰动影响研究[J]. 煤炭科学技术,2020,48(3):232-239.
LI Chunyuan,WANG Hongbo,SHI Yaoyu. Study on disturbing influence of overlying remaining coal pillars on underlying coal seam mining[J]. Coal Science and Technology,2020,48(3):232-239.
|
[5] |
马宁,张臣,贾江锋,等. 上分层遗留煤柱影响下工作面安全回采研究[J]. 煤矿安全,2019,50(12):192-196.
MA Ning,ZHANG Chen,JIA Jiangfeng,et al. Study on safe mining of working face under the influence of upper stratified coal pillar[J]. Safety in Coal Mines,2019,50(12):192-196.
|
[6] |
张念超. 多煤层煤柱底板应力分布规律及其应用[D]. 徐州:中国矿业大学,2016.
ZHANG Nianchao. Stress distribution law of coal pillar floor in multi-seam and its application[D]. Xuzhou:China University of Mining and Technology,2016.
|
[7] |
黄庆享,曹健,贺雁鹏,等. 浅埋近距离煤层群分类及其采场支护阻力确定[J]. 采矿与安全工程学报,2018,35(6):1177-1184.
HUANG Qingxiang,CAO Jian,HE Yanpeng,et al. Classification of shallow buried close seams group and support resistance determination[J]. Journal of Mining & Safety Engineering,2018,35(6):1177-1184.
|
[8] |
黄庆享,赵萌烨,黄克军. 浅埋煤层群开采顶板双关键层结构及支护阻力研究[J]. 中国矿业大学学报,2019,48(1):71-77,86.
HUANG Qingxiang,ZHAO Mengye,HUANG Kejun. Study of roof double key strata structure and support resistance of shallow coal seams group mining[J]. Journal of China University of Mining & Technology,2019,48(1):71-77,86.
|
[9] |
ZHU Defu,TU Shihao. Mechanisms of support failure induced by repeated mining under gobs created by two-seam room mining and prevention measures[J]. Engineering Failure Analysis,2017,82:161-178. DOI: 10.1016/j.engfailanal.2017.08.029
|
[10] |
屠世浩,王方田,窦凤金,等. 上层煤柱下综放沿空回采巷道矿压规律研究[J]. 中国矿业大学学报,2010,39(1):1-5.
TU Shihao,WANG Fangtian,DOU Fengjin,et al. Fully mechanized top-coal caving:underground stress at gateways under barrier pillars of an upper coal seamm[J]. Journal of China University of Mining & Technology,2010,39(1):1-5.
|
[11] |
ZHANG Chunlei,ZHANG Yong,ZUO Jianping,et al. Fracture pattern of overlying strata in multiple coal seam mining in a physical model vis-à-vis MATLAB analysis and geological radar[J]. Mining,Metallurgy & Exploration,2021,38(2):897-911.
|
[12] |
杨伟,兰世瑞,李振雷,等. 厚硬顶板多煤层开采煤柱型冲击显现分析[J]. 工矿自动化,2022,48(2):70-76.
YANG Wei,LAN Shirui,LI Zhenlei,et al. Analysis of coal pillar rock burst appearance in multi-seam mining with thick and hard roof[J]. Industry and Mine Automation,2022,48(2):70-76.
|
[13] |
白小军,王志乾,李广治,等. 多煤层开采破断顶板群结构发育扩展规律研究[J]. 煤炭技术,2023,42(11):48-52.
BAI Xiaojun,WANG Zhiqian,LI Guangzhi,et al. Research on structure development and expansion law of broken roof group in multi-coal seam mining[J]. Coal Technology,2023,42(11):48-52.
|
[14] |
高成,金腾,周志伟,等. 浅埋厚煤层开采覆岩破断与上覆煤层运移规律研究[J]. 煤炭工程,2024,56(12):95-102. DOI: 10.11799/ce202412015
GAO Cheng,JIN Teng,ZHOU Zhiwei,et al. Overburden fracture and overlying coal seam migration laws in shallow and thick seam mining[J]. Coal Engineering,2024,56(12):95-102. DOI: 10.11799/ce202412015
|
[15] |
杜怀龙,刘忠平,田志诚. 近距离煤层上覆遗留煤柱应力扰动特征研究及应用[J]. 矿业安全与环保,2024,51(6):112-121.
DU Huailong,LIU Zhongping,TIAN Zhicheng. Research and application of stress disturbance characteristic of overlying residual coal pillar in contiguous seams[J]. Mining Safety & Environmental Protection,2024,51(6):112-121.
|
[16] |
张永亮,杜怀龙. 厚煤层工作面区段保护煤柱合理尺寸分析[J]. 中国煤炭,2023,49(增刊2):186-193.
ZHANG Yongliang,DU Huailong. Analysis of the reasonable size of section protective coal pillar in working face of thick coal seam[J]. China Coal,2023,49(S2):186-193.
|
[17] |
刘军. 煤层群上下保护层开采围岩应力及裂隙演化规律研究[J]. 矿业安全与环保,2024,51(4):56-63,73.
LIU Jun. Study on the stress and fracture evolution law of surrounding rock during mining of upper and lower protective layers in coal seams[J]. Mining Safety & Environmental Protection,2024,51(4):56-63,73.
|
[18] |
孟凡林,王震,孙治豪,等. 近距离煤层采空区下厚煤层开采强矿压机理及控制研究[J]. 中国矿业,2024,33(9):130-138.
MENG Fanlin,WANG Zhen,SUN Zhihao,et al. Study on mechanism and control of strong ore pressure in mining thick coal seam under goaf in close coal seam[J]. China Mining Magazine,2024,33(9):130-138.
|
[19] |
张传玖,李宣良,贾士耀,等. 多煤层采动层间覆岩破断规律及稳定性控制研究[J]. 矿业研究与开发,2024,44(8):104-112.
ZHANG Chuanjiu,LI Xuanliang,JIA Shiyao,et al. Study on the fracture law and stability control of interlayer overburden rock in multiple coal seams mining[J]. Mining Research and Development,2024,44(8):104-112.
|
[20] |
丁自伟,巩欣伟,张杰,等. 煤层群下行开采底板应力演化规律与合理巷道错距研究[J]. 西安科技大学学报,2024,44(2):213-225.
DING Ziwei,GONG Xinwei,ZHANG Jie,et al. Study on the evolution law of bottom plate stress and reasonable roadway misalignment in downstream mining of coal seam group[J]. Journal of Xi'an University of Science and Technology,2024,44(2):213-225.
|
[21] |
杨曜驰,赵国贞. 近距离煤层群多重采动覆岩破坏特征及应力传递规律研究[J]. 煤炭工程,2024,56(3):110-116.
YANG Yaochi,ZHAO Guozhen. Failure characteristics and stress transfer rule of overburden under multiple mining in contiguous coal seams[J]. Coal Engineering,2024,56(3):110-116.
|
[22] |
韦梦菡,何学秋,宋大钊,等. 煤岩破裂电磁辐射矢量特征规律[J]. 中国矿业大学学报,2023,52(6):1096-1107.
WEI Menghan,HE Xueqiu,SONG Dazhao,et al. Vector characteristics and laws of electromagnetic radiation generated from coal rock fracture[J]. Journal of China University of Mining & Technology,2023,52(6):1096-1107.
|