WU Lai-jie, MA Bin, LU Gui-ying. Application of digital cross-correlation technology in AC electrical equipment[J]. Journal of Mine Automation, 2013, 39(12): 69-72. DOI: 10.7526/j.issn.1671-251X.2013.12.017
Citation: WU Lai-jie, MA Bin, LU Gui-ying. Application of digital cross-correlation technology in AC electrical equipment[J]. Journal of Mine Automation, 2013, 39(12): 69-72. DOI: 10.7526/j.issn.1671-251X.2013.12.017

Application of digital cross-correlation technology in AC electrical equipment

More Information
  • In view of problem of low measurement accuracy when traditional electric equipment measures formation with big resistivity, the paper proposed a scheme of using digital cross-correlation technology to reduce noise in AC electrical equipment. The scheme makes AD conversion for measuring signal of receiving electrode of AC electrical equipment and reference signal of exciting source, and calculates cross-correlation function of the measuring signal and the reference signal in DSP processor to extract useful components in the measuring signal which has the same frequency with reference signal, so as to effectively filter various noises in signal transmission process. Test result shows that using digital cross-correlation technology to process weak measuring signal of AC electrical equipment can improve measuring precision and anti-interference ability of AC electrical equipment.
  • Related Articles

    [1]WANG Cheng, LI Bofan, WU Zhang, LU Jingjin. Research on the application of inter hole resistivity monitoring in grouting effect detection[J]. Journal of Mine Automation, 2023, 49(10): 127-132, 159. DOI: 10.13272/j.issn.1671-251x.2022110089
    [2]LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation, 2023, 49(1): 36-45, 108. DOI: 10.13272/j.issn.1671-251x.18052
    [3]LI Jie, LEI Zhipeng, LI Linbo, REN Ruibin, WANG Feiyu, XIANG Xueyi. Measurement method of borehole wall resistivity for coal mine gas extraction[J]. Journal of Mine Automation, 2022, 48(5): 32-38. DOI: 10.13272/j.issn.1671-251x.2022010025
    [4]LU Jingji. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Journal of Mine Automation, 2021, 47(2): 18-25. DOI: 10.13272/j.issn.1671-251x.2020080070
    [5]WANG Cheng, LU Jingji. Application of 3D inversion of audio-frequency electric perspective in detection of water-containing/water-conductive collapse colum[J]. Journal of Mine Automation, 2019, 45(8): 105-108. DOI: 10.13272/j.issn.1671-251x.2019010028
    [6]XU Zhaoyong, SONG Dazhao, WANG Enyuan, QIU Liming. Effect of moisture content on resistivity of coal or rock[J]. Journal of Mine Automation, 2015, 41(8): 72-76. DOI: 10.13272/j.issn.1671-251x.2015.08.018
    [7]HE Yonghua. Research of noise in audio system of fully mechanized working face[J]. Journal of Mine Automation, 2014, 40(3): 11-15. DOI: 10.13272/j.issn.1671-251x.2014.03.003
    [8]ZHANG Miaofei, ZHANG Jianying, XU Changsheng. Application research of wavelet threshold noise reduction in coal mine voice communicatio[J]. Journal of Mine Automation, 2014, 40(1): 50-54. DOI: 10.13272/j.issn.1671-251x.2014.01.014
    [9]LI Xiao-xin, WANG Ji-yu, NIU Yu-guang. Design of seepage line monitoring system for tailings dam based on high density resistivity method[J]. Journal of Mine Automation, 2013, 39(4): 20-23.
    [10]YANG Ni-ni~(, 2), YANG Jin~(1. Application Research of the High Density Resistivity Method for Detection of Karst of Coal Mine[J]. Journal of Mine Automation, 2008, 34(5): 1-4.
  • Cited by

    Periodical cited type(30)

    1. 郝晓旭. 采煤机自动调高控制系统研究与应用. 现代矿业. 2025(02): 190-192+196 .
    2. 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术. 工矿自动化. 2024(01): 9-16 . 本站查看
    3. 李晓真,张海波,王光远. 基于ISSA-FNN的采煤机健康状态评估. 煤矿机械. 2024(03): 168-171 .
    4. 周展,桓磊,蒋峰,张浩涯,韩蓓蕾. 基于矿用5G技术的采煤机智能化技术. 陕西煤炭. 2024(02): 114-117 .
    5. 李重重,姚钰鹏. 基于工况触发的采煤机滚筒截割高度模板生成方法. 工矿自动化. 2024(04): 144-152 . 本站查看
    6. 李存有. 薄煤层采煤机电缆结构优化与应用研究. 矿业装备. 2024(04): 134-136 .
    7. 刘敏. 煤矿采煤机自动化与智能化技术探讨. 矿业装备. 2024(04): 128-130 .
    8. 邱锦波,刘聪,吴昊坤,庄德玉,朱胜强. 采煤机智能化发展现状及关键技术展望. 工矿自动化. 2024(07): 64-78 . 本站查看
    9. 王鑫,吴士良. 智能综采工作面系统设计及关键技术研究. 中国煤炭. 2024(09): 73-79 .
    10. 荆瑞俊,冯晨钟,李昕. 基于多传感器数据融合的煤机行进监测系统. 智能计算机与应用. 2024(10): 189-193 .
    11. 王忠宾,魏东,司垒,梁超权,谭超,赵亦辉. 基于协议匹配和数据压缩的采煤机数据管理技术研究. 煤炭科学技术. 2024(11): 89-102 .
    12. 杨柯,熊祖强,王春,付斌. 综采工作面液压支架阻力精准采集及分析技术研究. 中国煤炭. 2024(12): 131-139 .
    13. 王月辉. 煤矿采煤机智能化关键技术研究. 机械管理开发. 2023(01): 257-259 .
    14. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
    15. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 .
    16. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 .
    17. 李荣涛. 采煤机自动控制系统的安全优化研究. 机械管理开发. 2023(06): 151-152+155 .
    18. 崔耀,叶壮. 基于5G+云边端协同技术的采煤机智能调高调速控制系统设计与应用. 煤炭科学技术. 2023(06): 205-216 .
    19. 王明耀. 智能化综采工作面自动化高质量技术应用分析. 中国设备工程. 2023(14): 28-30 .
    20. 杨晓林. 采煤机牵引机构接触应力分析及其结构优化研究. 机械管理开发. 2023(07): 163-164+167 .
    21. 张磊. 互联网+采煤机智能化关键技术研究. 矿业装备. 2023(06): 41-43 .
    22. 崔耀,吴景红,叶壮,张森浪. 高瓦斯综放工作面智能放煤关键技术研究与应用. 煤炭科学技术. 2023(10): 252-265 .
    23. 邬鑫,逯晓臻,李战华. 关于综采工作面采煤机智能化技术的研究. 内蒙古煤炭经济. 2023(20): 34-36 .
    24. 巩师鑫,任怀伟,黄伟,李建. 复杂起伏煤层自适应开采截割路径优化与仿真. 煤炭科学技术. 2023(S2): 210-218 .
    25. 李博文,乔栋,赵杰,李乾,谢亚龙. 基于自适应模糊PID的采煤机滚筒调高控制技术的研究. 自动化应用. 2022(03): 135-138 .
    26. 周红旭,孙海军,张雷,王华英. 基于一维卷积神经网络的掘进机截割部磁场辅助定位技术. 河北科技大学学报. 2022(03): 231-239 .
    27. 冯国庭. 智能薄煤层等高综采工作面关键技术与装备. 煤炭科学技术. 2022(S1): 264-268 .
    28. 王清峰,陈航,周涛. 煤矿井下自动化钻进技术及装备的发展历程与展望. 矿业安全与环保. 2022(04): 45-50 .
    29. 张登山,邢海龙,张泽. 煤矿综采成套智能化控制系统研究. 工矿自动化. 2022(S1): 92-94 . 本站查看
    30. 孙晋璐,高贵军,琚林涛,时三波. 寺河二号井薄煤层综采工作面智能化系统设计. 煤炭工程. 2022(10): 17-21 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (35) PDF downloads (15) Cited by(44)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return