LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45, 108. DOI: 10.13272/j.issn.1671-251x.18052
Citation: LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45, 108. DOI: 10.13272/j.issn.1671-251x.18052

Study on dynamic response characteristics of resistivity in mining failure process of working face

More Information
  • Received Date: October 14, 2022
  • Revised Date: December 30, 2022
  • Available Online: January 16, 2023
  • The mine resistivity method plays an important role in monitoring hidden danger of water hazards in coal working face. However, the abnormal response of mining failure process of coal working face will interfere with the identification of hidden danger of floor water hazards. In order to improve the interpretation precision of the mine resistivity method for monitoring hidden danger of floor water hazard in coal working face, simultaneously considering the influence of overburden failure and floor failure, a dynamic geoelectric model of the mining failure process in coal working face is established. The roof monitoring and floor monitoring are respectively carried out through three-dimensional numerical simulation and inversion imaging of mine resistivity method. The dynamic response characteristics of resistivity in the mining failure process are analyzed. The resistivity response characteristics of floor water hazard are identified and extracted. The analysis results show that the resistivity anomaly area formed in the process of mining failure moves forward with the advancing of the working face. There will be relatively low resistivity anomaly in the action range of the advance support pressure, and relatively high resistivity anomaly in the goaf area. The resistivity response at the fixed position of the working face will experience a process of first decreasing, then increasing, and then decreasing in the mining process. This process is basically consistent with the periodic stress change and failure process of the roof and floor in the mining process of the working face. The low resistance abnormal response intensity of floor water hazard is related to its position relative to the working face. When the distribution range of floor water hazard overlaps with that of goaf, the high resistance abnormal response of goaf will weaken the low resistance abnormal response of floor water hazard. When the distribution range of floor water hazard danger overlaps with the area affected by the advance support pressure, the low resistance abnormal response of the two will be superimposed together. The low resistance abnormal response can be enhanced to a certain extent. The influence of the mining damage process can be eliminated after the pure anomaly extraction of the hidden danger of floor water hazard. The pure abnormal response intensity of floor water hazards at different positions is basically the same, and their vertical influence scope is larger than that of mining damage.
  • [1]
    张培森,朱慧聪,李复兴,等. 2008—2019年我国煤矿水害事故统计及演变趋势分析[J]. 煤矿安全,2021,52(8):194-200,207.

    ZHANG Peisen,ZHU Huicong,LI Fuxing,et al. Evolution trend and statistical analysis of coal mine water disaster accidents in China from 2008 to 2019[J]. Safety in Coal Mines,2021,52(8):194-200,207.
    [2]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
    [3]
    董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. DOI: 10.3969/j.issn.1001-1986.2021.01.003
    [4]
    靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10-17.

    JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10-17.
    [5]
    吴泱序, 陈平, 李波. 基于3D双流网络的地下岩层破裂微震震源定位[J/OL]. 煤炭科学技术: 1-9[2022-10-03]. DOI: 10.13199/j.cnki.cst.2022-0395.

    WU Yangxu, CHEN Ping, LI Bo. Location of underground microseismic source based on 3D two-stream network[J/OL]. Coal Science and Technology: 1-9[2022-10-03]. DOI: 10.13199/j.cnki.cst.2022-0395.
    [6]
    鲁晶津,王冰纯,李德山,等. 矿井电阻率法监测系统在采煤工作面水害防治中的应用[J]. 煤田地质与勘探,2022,50(1):36-44.

    LU Jingjin,WANG Bingchun,LI Deshan,et al. Application of mine-used resistivity monitoring system in working face water disaster control[J]. Coal Geology & Exploration,2022,50(1):36-44.
    [7]
    孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报,2021,29(4):985-1001.

    SUN Binyang,ZHANG Pingsong. Research progress and prospect of surrounding rock deformation and failure monitoring in stope based on DFOS[J]. Journal of Engineering Geology,2021,29(4):985-1001.
    [8]
    鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18-26.

    LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18-26.
    [9]
    于师建,程久龙,王玉和. 覆岩破坏视电阻率变化特征研究[J]. 煤炭学报,1999,24(5):457-460.

    YU Shijian,CHENG Jiulong,WANG Yuhe. The study on apparent resistivity change feature of overlying strata[J]. Journal of China Coal Society,1999,24(5):457-460.
    [10]
    程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699-706. DOI: 10.3321/j.issn:0001-5733.2000.05.014

    CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699-706. DOI: 10.3321/j.issn:0001-5733.2000.05.014
    [11]
    程久龙. 矿山采动裂隙岩体地球物理场特征研究及工程应用[J]. 中国矿业大学学报,2008,37(6):877-879.

    CHENG Jiulong. Study on geophysical field characteristics of mining-induced fracture rock mass in mine and its applications[J]. Journal of China University of Mining & Technology,2008,37(6):877-879.
    [12]
    张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875.

    ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875.
    [13]
    张平松,胡雄武,刘盛东. 采煤面覆岩破坏动态测试模拟研究[J]. 岩石力学与工程学报,2011,30(1):78-83.

    ZHANG Pingsong,HU Xiongwu,LIU Shengdong. Study of dynamic detection simulation of overburden failure in model workface[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):78-83.
    [14]
    张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952-956.

    ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952-956.
    [15]
    王莹,梁德贤,翟培合. 采动影响下煤层覆岩电性变化规律研究[J]. 煤炭科学技术,2015,43(5):122-125,105.

    WANG Ying,LIANG Dexian,ZHAI Peihe. Study on electrical property variation law of overburden strata above seam under mining influences[J]. Coal Science and Technology,2015,43(5):122-125,105.
    [16]
    吴荣新,张卫,张平松. 并行电法监测工作面“垮落带”岩层动态变化[J]. 煤炭学报,2012,37(4):571-577.

    WU Rongxin,ZHANG Wei,ZHANG Pingsong. Exploration of parallel electrical technology for the dynamic variation of caving zone strata in coal face[J]. Journal of China Coal Society,2012,37(4):571-577.
    [17]
    吴荣新,吴茂林,曹建富,等. 厚松散层薄基岩坚硬顶板工作面覆岩破坏电法监测[J]. 煤炭科学技术,2020,48(1):239-245.

    WU Rongxin,WU Maolin,CAO Jianfu,et al. Electrical monitoring of overburden failure in hard roof working face with thick loose layer and thin bedrock[J]. Coal Science and Technology,2020,48(1):239-245.
    [18]
    刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356.

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356.
    [19]
    张朋,王一,刘盛东,等. 工作面底板变形与破坏电阻率特征[J]. 煤田地质与勘探,2011,39(1):64-67.

    ZHANG Peng,WANG Yi,LIU Shengdong,et al. Resistivity characteristic of deformation and failure of floor in workface[J]. Coal Geology & Exploration,2011,39(1):64-67.
    [20]
    孙希奎,许进鹏,杨圣伦,等. 电阻率法动态监测煤层底板破坏变形规律研究[J]. 煤炭科学技术,2013,41(1):113-115,59.

    SUN Xikui,XU Jinpeng,YANG Shenglun,et al. Study on electric resistivity method applied to dynamically monitor and measure failure deformation law of seam floor[J]. Coal Science and Technology,2013,41(1):113-115,59.
    [21]
    吴基文,翟晓荣,张海潮,等. 注浆加固与含水层改造底板采动效应孔巷电阻率CT探测研究[J]. 地球物理学进展,2015,30(2):920-927. DOI: 10.6038/pg20150260

    WU Jiwen,ZHAI Xiaorong,ZHANG Haichao,et al. The electronic resistivity CT detection and research of holes and roadways on the mining effect of floors after grouting reinforcement and reconstruction of aquifers[J]. Progress in Geophysics,2015,30(2):920-927. DOI: 10.6038/pg20150260
    [22]
    张平松,刘畅,欧元超,等. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探,2021,49(1):263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029

    ZHANG Pingsong,LIU Chang,OU Yuanchao,et al. Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield[J]. Coal Geology & Exploration,2021,49(1):263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029
    [23]
    杨海平,刘盛东,杨彩,等. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报,2021,29(4):1002-1009.

    YANG Haiping,LIU Shengdong,YANG Cai,et al. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology,2021,29(4):1002-1009.
    [24]
    LU Jingjin,WU Xiaoping,KLAUS S. Algebraic multigrid method for 3D DC resistivity modeling[J]. Chinese Journal of Geophysics,2010,53(3):700-707.
    [25]
    PIDLISECKY A,HABER E,KNIGHT R. RESINVM3D:a 3D resistivity inversion package[J]. Geophysics,2007,72(2):H1-H10. DOI: 10.1190/1.2402499
    [26]
    徐永圻. 采矿学[M]. 徐州: 中国矿业大学出版社, 2003.

    XU Yongqi. Mining science[M]. Xuzhou: China University of Mining and Technology Press, 2003.
  • Related Articles

    [1]JIN Bing, ZHANG Lang, LI Wei, ZHENG Yi, LIU Yanqing, ZHANG Yibin. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation, 2024, 50(10): 97-104, 119. DOI: 10.13272/j.issn.1671-251x.2024080090
    [2]WANG Baogui. Hydraulic fracturing and punching integration enhanced permeability gas extraction technology[J]. Journal of Mine Automation, 2024, 50(1): 35-41. DOI: 10.13272/j.issn.1671-251x.2023050014
    [3]QIN Ruxiang, YANG Ke, CHENG Jian. Research on the protection range of pressure-relief in the mining of upper protective layer[J]. Journal of Mine Automation, 2021, 47(11): 81-87. DOI: 10.13272/j.issn.1671-251x.2021050028
    [4]DU Jinlei, ZHANG Minbo, ZHANG Dianji, ZHANG Dangyu, ZHANG Zhen, CUI Li, WANG Zichao, LI Chunxin, ZHANG Fujian. Hydraulic cutting cooperative pressure relief and permeability enhancement technology in low permeability outburst coal seam[J]. Journal of Mine Automation, 2021, 47(7): 98-105. DOI: 10.13272/j.issn.1671-251x.17698
    [5]ZHANG Zhen. Influence of hydraulic fracturing parameters of reused coal pillar roadway on pressure relief effect[J]. Journal of Mine Automation, 2020, 46(8): 58-63. DOI: 10.13272/j.issn.1671-251x.2020060081
    [6]CHEN Hongtao, LI Taixun. Optimization test of ultra-high pressure hydraulic slotting process parameters in Xuehu Coal Mine[J]. Journal of Mine Automation, 2020, 46(1): 90-94. DOI: 10.13272/j.issn.1671-251x.2019060067
    [7]LI Wujun, FU Yukai, WANG Tao, ZHANG Zhantao. Pressure relief mechanism and experiment of directional hydraulic fracturing in retaining roadway[J]. Journal of Mine Automation, 2019, 45(10): 74-79. DOI: 10.13272/j.issn.1671-251x.2019030008
    [8]LYU Longhui, JIN Hongxia. Methods of increasing amount of pressure-relief gas of protective layer[J]. Journal of Mine Automation, 2016, 42(7): 70-72. DOI: 10.13272/j.issn.1671-251x.2016.07.017
    [9]JIANG Qian, ZHANG Ruilin. Application research of borehole hydraulic fracturing technology for Linhuan Coal Mine[J]. Journal of Mine Automation, 2015, 41(1): 67-70. DOI: 10.13272/j.issn.1671-251x.2015.01.017
    [10]Yang Ping, Zhang Zong. Application of PIV in Research of Internal FLow Field Measurement of Separation Machinery[J]. Journal of Mine Automation, 2009, 35(11): 53-55.
  • Cited by

    Periodical cited type(12)

    1. 王占宝,刘小杰,刘鹏. 基于Grey-DEMATEL的煤矿隐患关键因素研究. 中国安全科学学报. 2024(S1): 39-45 .
    2. 董军,王伟权,夏天文. 煤矿井下人员超宽带定位的联合解算方法. 黑龙江科技大学学报. 2023(03): 464-469 .
    3. 王永刚,刘惠春. 民航安全管理体系与双重预防机制对比研究. 综合运输. 2023(09): 22-27+69 .
    4. 赵梦洁,杨玉中. 基于组合赋权—灰色VIKOR的煤矿隐患排查治理能力评估研究. 矿业安全与环保. 2023(06): 141-146 .
    5. 刘茜. 大数据下煤矿安全风险评价研究. 河北企业. 2022(09): 68-70 .
    6. 田晓红,何新卫. 基于大数据的煤矿安全风险智能评价和预警研究. 微型电脑应用. 2022(12): 146-149 .
    7. 赵安新,张育刚,韩安,徐战,王安义. 基于层次分析法的煤矿分级分层安全状态评估方法. 煤炭技术. 2021(03): 162-165 .
    8. 朱宏博. 煤矿安全隐患采集决策智能防控系统设计. 机电工程技术. 2021(04): 71-73 .
    9. 逄明祥,王善培,李乾,程学珍. 一种基于遗传神经网络的煤矿井下定位算法. 实验室研究与探索. 2021(04): 8-12 .
    10. 王道元,王俊,孟志斌,张雪峰,李敬兆. 煤矿安全风险智能分级管控与信息预警系统. 煤炭科学技术. 2021(10): 136-144 .
    11. 张洋杰. 煤炭行业安全形势分析. 煤炭经济研究. 2020(01): 63-66 .
    12. 郭孝园. 煤矿安全隐患风险评价分析. 内蒙古煤炭经济. 2020(06): 125-126 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (210) PDF downloads (23) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return