XIAO Shu-yan, CUI Jie. Research of spectrum sensing algorithm of cognitive radio based on improved D-S evidence theory[J]. Journal of Mine Automation, 2013, 39(8): 42-46. DOI: 10.7526/j.issn.1671-251X.2013.08.012
Citation: XIAO Shu-yan, CUI Jie. Research of spectrum sensing algorithm of cognitive radio based on improved D-S evidence theory[J]. Journal of Mine Automation, 2013, 39(8): 42-46. DOI: 10.7526/j.issn.1671-251X.2013.08.012

Research of spectrum sensing algorithm of cognitive radio based on improved D-S evidence theory

More Information
  • In view of problem that spectrum sensing algorithm of cognitive radio based on D-S evidence theory will due to an inconsistent result when sensing information of cognitive nodes has serious conflict, the paper proposed a spectrum sensing algorithm of cognitive radio based on improved D-S evidence theory. The improved algorithm uses a new weighted average method to average each evidence to further reduce influence of abnormal evidences compared with arithmetic average method. Meanwhile, the improved algorithm calculates weight of evidence through calculating distance from evidence to average evidence, which can solve complexity problem of weight calculation. The experiment result shows that the improved algorithm can effectively improve sensing performance of spectrum sensing system of cognitive radio when sensing information of cognitive nodes has serious conflict.
  • Related Articles

    [1]BAI Sizhong. Automatic tracking method of reference waveform of mine ultrasonic gas flowmeter[J]. Journal of Mine Automation, 2022, 48(4): 38-43, 59. DOI: 10.13272/j.issn.1671-251x.2021080082
    [2]YU Liya, ZHAO Yongfang, ZHANG Lingyun, CHEN Guangbo. Coal and gas outburst risk evaluation based on cloud model and D -S theory[J]. Journal of Mine Automation, 2020, 46(11): 106-112. DOI: 10.13272/j.issn.1671 -251x.2020040029
    [3]ZHANG Ping, ZHOU Qiong, SUN Qian. Research on spectrum sensing algorithm of coal mine based on Strackelberg game theory[J]. Journal of Mine Automation, 2016, 42(8): 25-28. DOI: 10.13272/j.issn.1671-251x.2016.08.007
    [4]XIAO Shu-yan, CUI Jie. Research of spectrum sensing algorithm of cognitive radio based on improved D-S evidence theory[J]. Journal of Mine Automation, 2013, 39(8): 42-46. DOI: 10.7526/j.issn.1671-251X.2013.08.012
    [5]LI Bo, HUANG Yuan-yue. Underground Risk Assessing Method Based on Rough Set and D-S Evidence Theory[J]. Journal of Mine Automation, 2011, 37(11): 38-40.
    [6]FU Hua, KANG Hai-chao, LIANG Ming-guang. Research of Gas Monitoring System Based on BP Network and D-S Evidence Theory[J]. Journal of Mine Automation, 2011, 37(8): 159-161.
    [7]JIAO Lu-qin, YAO Qi, YANG Li. Fault Diagnosis Method of Rotor Broken Bar of Asynchronous Motor Based on SVM and D-S Evidence Theory[J]. Journal of Mine Automation, 2010, 36(6): 43-48.
    [8]SHI Li-ping, FAN Li-li, BU Ling-chen, ZHANG Jian-wei, WANG Tai-xu. Application of Improved p-q Detection Method in D-STATCOM Current Detectio[J]. Journal of Mine Automation, 2010, 36(3): 53-57.
    [9]CHEN Ying, NI Jian-jun, XU Li-zhong. The Decision Method of Multi-attribute and Multi-men Based on D-S Evidence Theory and Its Applicatio[J]. Journal of Mine Automation, 2005, 31(5): 16-18.
    [10]HAN Ya. Application of PWC318 in Σ-Δ A/D Convertor[J]. Journal of Mine Automation, 2003, 29(2): 17-19.
  • Cited by

    Periodical cited type(19)

    1. 张廷寿. 煤矿综掘巷道负压除尘性能研究. 中国矿业. 2025(04): 241-250 .
    2. 张京兆,苏慧冬,闫振国,马文杰,熊帅,张宸毓. 综掘工作面气室降尘技术研究. 工矿自动化. 2024(01): 80-87 . 本站查看
    3. 韩文杰,张虎,石磊,秦娜. 基于新型分风控尘方法的综掘工作面控尘机制研究. 煤矿安全. 2024(07): 59-67 .
    4. 邱观华,马帅帅,刘喜亮,朱儒化,张国梁,张世奇,魏涛,李小川. 机械通风参数对半煤岩巷道掘进面粉尘扩散特性的影响. 煤矿机械. 2024(09): 43-46 .
    5. 王建国,金小菊,韩敏. 气液两相喷雾雾化参数对综掘工作面降尘效果的影响. 矿业研究与开发. 2024(09): 151-157 .
    6. 司俊鸿,王雨晨,王昊宇,霍小泉,杨云峰. 综掘面动态产尘条件下粉尘扩散运移规律研究. 安全. 2024(10): 33-39 .
    7. 黄超,唐明云,王乐乐,蔡建国,袁雅楠. 通风扰动下连采工作面截割粉尘运移及分布规律. 工矿自动化. 2024(10): 168-178 . 本站查看
    8. 明洁. 综掘工作面长压短抽通风除尘技术探析. 当代化工研究. 2023(14): 114-116 .
    9. 张建国,孙海良,张国川,王海涛,姜德义,张黄情. 煤巷中不同截割部位对粉尘运移扩散规律的影响研究. 煤炭技术. 2023(08): 177-181 .
    10. 李硕,史克南,李松,吴江. 抗干扰激光粉尘传感器技术研究. 应用激光. 2023(08): 131-138 .
    11. 高海,程传兴. 压入式掘进巷道风流粉尘运移规律及最佳压风量研究. 山西煤炭. 2023(03): 54-61 .
    12. 马胜利,张强,张凯铭. 综掘工作面风幕控尘除尘系统数值模拟研究. 煤炭技术. 2022(02): 87-89 .
    13. 郭玉峰,郝永江,李云龙,郭伟强. 综放工作面转载破碎粉尘扩散运移规律分析. 煤炭工程. 2022(02): 73-77 .
    14. 黄正华. 综采面粉尘运移规律与通风降尘方式研究. 煤矿现代化. 2021(02): 104-106+111 .
    15. 龚晓燕,彭高高,宋涛,冯雄,陈菲,刘辉,谢沛,薛河. 掘进工作面长压短抽通风出风口风流调控参数研究. 工矿自动化. 2021(09): 45-52 . 本站查看
    16. 李军胜. 基于Realizable k-ε模型煤巷综掘工作面粉尘运移规律研究. 陕西煤炭. 2021(S2): 6-10 .
    17. 张运增,苏志伟. 神东矿区综合防尘关键技术及应用. 煤炭科学技术. 2021(S2): 115-119 .
    18. 杨敏,张全柱,赵紫梅. 高精度矿用粉尘监测系统的数据采集模块设计. 煤炭与化工. 2020(02): 65-68+72 .
    19. 王凯凯,司文,王江峰. 综掘工作面高效除尘技术研究与应用. 能源与环保. 2020(08): 72-75+80 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (40) PDF downloads (17) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return