LI Yan, NAN Xinyuan, LIN Wanke. Risk prediction of coal and gas outburst[J]. Journal of Mine Automation,2022,48(3):99-106. DOI: 10.13272/j.issn.1671-251x.2021070072
Citation: LI Yan, NAN Xinyuan, LIN Wanke. Risk prediction of coal and gas outburst[J]. Journal of Mine Automation,2022,48(3):99-106. DOI: 10.13272/j.issn.1671-251x.2021070072

Risk prediction of coal and gas outburst

More Information
  • Received Date: July 25, 2021
  • Revised Date: January 20, 2022
  • Available Online: March 04, 2022
  • In order to solve the problems of low accuracy and slow response speed of existing support vector machine (SVM)-based coal and gas outburst prediction methods, a risk prediction method of coal and gas outburst based on improved grey wolf optimizer (IGWO) optimized SVM is proposed. The influence degree of each influencing factor on coal and gas outburst is analyzed by using the grey relational entropy weight method, and gas pressure, gas content, initial gas diffusion speed and mining depth are extracted as main control factors of coal and gas outburst according to the correlation degree order, and the main control factors are divided into a training set and a test set, and normalized. In order to improve the defects of the traditional grey wolf optimizer (GWO) population easily falling into local optimum and slow optimization speed, the out-of-bounds processing mechanism and the random difference mutation strategy embedded in Levy flight are introduced to improve the grey wolf optimizer (ie IGWO), so as to improve the convergence precision and speed of GWO effectively. The core parameters and penalty parameters of SVM are optimized by IGWO, and the main control factors of coal and gas outburst are input into IGWO-SVM for classification. And the classification results are compared with the actual test set so as to realize the risk prediction of coal and gas outburst. The simulation results show that compared with the prediction methods based on whale optimization algorithm-SVM ( WOA-SVM), grey wolf optimizer-SVM ( GWO-SVM) and particle swarm optimization-SVM ( PSO-SVM), the prediction method based on IGWO-SVM has higher prediction precision, and can meet the precision and reliability requirements of coal and gas outburst prediction while improving the operation efficiency of SVM. The accuracy rate reaches 96.67% and the prediction speed is 5.58 s.
  • [1]
    李长兴,关金锋,李回贵,等. 煤与瓦斯突出预测的Bayes−逐步判别分析模型及应用[J]. 中国矿业,2020,29(2):117-123.

    LI Changxing,GUAN Jinfeng,LI Huigui,et al. Bayes stepwise discriminant analysis model and application of coal and gas outburst prediction[J]. China Mining Magazine,2020,29(2):117-123.
    [2]
    舒龙勇,王凯,齐庆新,等. 煤与瓦斯突出关键结构体致灾机制[J]. 岩石力学与工程学报,2017,36(2):347-356.

    SHU Longyong,WANG Kai,QI Qingxin,et al. Key structural body theory of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):347-356.
    [3]
    付华,丰胜成,高振彪,等. 基于双耦合算法的煤与瓦斯突出预测模型[J]. 中国安全科学学报,2018,28(3):84-89.

    FU Hua,FENG Shengcheng,GAO Zhenbiao,et al. Study on double coupling algorithm based model for coal and gas outburst prediction[J]. China Safety Science Journal,2018,28(3):84-89.
    [4]
    LIU Haibo,DONG Yujie,WANG Fuzhong,et al. Gas outburst prediction model using improved entropy weight grey correlation analysis and IPSO-LSSVM[J]. Mathematical Problems in Engineering,2020,152:63-72.
    [5]
    WU Yaqin,GAO Ronglei,YANG Jinzhen. Prediction of coal and gas outburst: a method based on the BP neural network optimized by GASA[J]. Process Safety and Environmental Protection,2019,133:64-72.
    [6]
    郑晓亮,来文豪,薛生. MI和SVM算法在煤与瓦斯突出预测中的应用[J]. 中国安全科学学报,2021,31(1):75-80.

    ZHENG Xiaoliang,LAI Wenhao,XUE Sheng. Application of MI and SVM in coal and gas outburst prediction[J]. China Safety Science Journal,2021,31(1):75-80.
    [7]
    韩永亮,李胜,胡海永,等. 基于改进的GA−ELM煤与瓦斯突出预测模型[J]. 地下空间与工程学报,2019,15(6):1895-1902.

    HAN Yongliang,LI Sheng,HU Haiyong,et al. Prediction model of coal and gas outburst based on optimized GA-ELM[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1895-1902.
    [8]
    温廷新,于凤娥,邵良杉. 基于灰色关联熵的煤与瓦斯突出概率神经网络预测模型[J]. 计算机应用研究,2018,35(11):3326-3329.

    WEN Tingxin,YU Feng'e,SHAO Liangshan. Probabilistic neural network prediction model of coal and gas outburst based on grey relational entropy[J]. Application Research of Computers,2018,35(11):3326-3329.
    [9]
    吴雅琴,李惠君,徐丹妮. 基于IPSO−Powell优化SVM的煤与瓦斯突出预测算法[J]. 工矿自动化,2020,46(4):46-53.

    WU Yaqin,LI Huijun,XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Industry and Mine Automation,2020,46(4):46-53.
    [10]
    BIAN Xiaoqiang,ZHANG Qian,ZHANG Lu,et al. A grey wolf optimizer-based support vector machine for the solubility of aromatic compounds in supercritical carbon dioxide[J]. Chemical Engineering Research and Design,2017,123:284-294. DOI: 10.1016/j.cherd.2017.05.008
    [11]
    冯璋,裴东,王维. 基于改进灰狼算法优化支持向量机的人脸识别[J]. 计算机工程与科学,2019,41(6):1057-1063.

    FENG Zhang,PEI Dong,WANG Wei. Face recognition by support vector machine optimized by an improved grey wolf algorithm[J]. Computer Engineering & Science,2019,41(6):1057-1063.
    [12]
    陈闯,RYAD Chellali,邢尹. 改进GWO优化SVM的语音情感识别研究[J]. 计算机工程与应用,2018,54(16):113-118.

    CHEN Chuang,RYAD Chellali,XING Yin. Research on speech emotion recognition based on improved GWO optimization SVM[J]. Computer Engineering and Applications,2018,54(16):113-118.
    [13]
    王志华,罗齐,刘绍廷. 基于混沌灰狼优化算法的SVM分类器研究[J]. 计算机工程与科学,2018,40(11):2040-2046.

    WANG Zhihua,LUO Qi,LIU Shaoting. A SVM classifier based on chaotic gray wolf optimization algorithm[J]. Computer Engineering & Science,2018,40(11):2040-2046.
    [14]
    郑直,张华钦,潘月. 基于改进鲸鱼算法优化LSTM的滚动轴承故障诊断[J]. 振动与冲击,2021,40(7):274-280.

    ZHENG Zhi,ZHANG Huaqin,PAN Yue. Rolling bearing fault diagnosis based on IWOA-LSTM[J]. Journal of Vibration and Shock,2021,40(7):274-280.
    [15]
    LIU Haibo,DONG Yujie,WANG Fuzhong. Gas outburst prediction model using rough set and support vector machine[J]. Evolutionary Intelligence,2020,7:1-9.
    [16]
    ZHANG Chaolin,WANG Enyuan,XU Jiang,et al. A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal[J]. Fuel,2021,287:1-10.
    [17]
    李冬,彭苏萍,杜文凤,等. 煤层瓦斯突出危险区综合预测方法[J]. 煤炭学报,2018,43(2):466-472.

    LI Dong,PENG Suping,DU Wenfeng,et al. Comprehensive prediction method of coal seam gas outburst danger zone[J]. Journal of China Coal Society,2018,43(2):466-472.
    [18]
    陈恋,袁梅,高强,等. 主成分−费歇尔判别模型在煤与瓦斯突出等级预测中的应用[J]. 工矿自动化,2020,46(3):55-62.

    CHEN Lian,YUAN Mei,GAO Qiang,et al. Application of principal component-Fisher discrimination model in grade prediction of coal and gas outburst[J]. Industry and Mine Automation,2020,46(3):55-62.
    [19]
    李映洁. 多源信息融合技术在煤与瓦斯突出预测中的应用研究[D]. 徐州: 中国矿业大学, 2018.

    LI Yingjie. Study on the application of multi-source information fusion technology in the coal and gas outburst prediction[D]. Xuzhou: China University of Mining and Technology, 2018.
    [20]
    李杰. 煤与瓦斯突出IGSA−SVM预测模型及其应用[D]. 太原: 太原理工大学, 2016.

    LI Jie. Coal and gas outburst IGSA-SVM prediction model and its application[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [21]
    朱政江. 基于神经网络和粒子群优化SVM的煤与瓦斯突出预测模型研究[D]. 太原: 太原理工大学, 2014.

    ZHU Zhengjiang. Research of coal and gas outburst prediction models based on neural network and PSO-SVM [D]. Taiyuan: Taiyuan University of Technology, 2014.
  • Related Articles

    [1]SHANG Weidong, WANG Haili, ZHANG Xiaoxia, WANG Hao, XU Hualong. A coal mine data acquisition, fusion and sharing system based on object model[J]. Journal of Mine Automation, 2024, 50(1): 17-24, 34. DOI: 10.13272/j.issn.1671-251x.2023070047
    [2]TAN Zhanglu, WANG Meijun. Research on the concept connotation, development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation, 2022, 48(5): 6-14. DOI: 10.13272/j.issn.1671-251x.2021120090
    [3]ZHAO Ha. Research on smart mine data sharing scheme based on blockchai[J]. Journal of Mine Automation, 2021, 47(S2): 45-48.
    [4]ZHANG Peng. Exploration on construction of big data system for intelligent mine[J]. Journal of Mine Automation, 2021, 47(S1): 21-23.
    [5]TAN Zhanglu, MA Yingying. Research on coal big data and its developing directio[J]. Journal of Mine Automation, 2018, 44(3): 49-52. DOI: 10.13272/j.issn.1671-251x.2017110059
    [6]ZHANG Xiaoyan, CAI Panliang. Research of informatization framework of transportation and sale for large coal enterprise[J]. Journal of Mine Automation, 2014, 40(4): 93-95. DOI: 10.13272/j.issn.1671-251x.2014.04.023
    [7]HAN A. Research of enterprise service bus technology[J]. Journal of Mine Automation, 2013, 39(11): 50-53. DOI: 10.7526/j.issn.1671-251X.2013.11.014
    [8]YAN Zhao-zhen, HE Yao-yi, DING Rui-qi. Research of Data Interaction Middleware Based on OPC UA[J]. Journal of Mine Automation, 2012, 38(12): 80-82.
    [9]ZHOU Jing. The Application of the Technology of Teradata Data Warehouse[J]. Journal of Mine Automation, 2005, 31(6): 97-99.
    [10]XIE Jian-fei. Using Shared RAM for Data Exchange Between Two CPU[J]. Journal of Mine Automation, 1997, 23(4): 65-68.
  • Cited by

    Periodical cited type(21)

    1. 赵冬. 基于机器视觉的煤矿井下火灾检测方法. 自动化应用. 2025(01): 101-104+107 .
    2. 孙继平,李小伟. 基于图像顺滑度的矿井外因火灾识别及抗干扰方法研究. 中国矿业大学学报. 2025(01): 215-226 .
    3. 耿哲,张德胜. 煤矿井下区域防灭火系统的设计. 矿山机械. 2025(03): 50-55 .
    4. 孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 .
    5. 王炎林,裴晓东,王凯,徐光. 基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究. 工矿自动化. 2025(03): 122-130 . 本站查看
    6. 胡纪年,李雨成,李俊桥,张巍. 基于CNN的矿井外因火灾火源定位方法研究. 中国安全生产科学技术. 2024(03): 134-140 .
    7. 李海龙. 基于机器视觉的煤矿用输送带跑偏检测方法. 矿山机械. 2024(05): 29-33 .
    8. 徐晓敏,朱正磊,刘鑫,郭青玄,赵一夫. 基于无人机监测的电力火灾起火点定位方法研究. 电力大数据. 2024(03): 50-56 .
    9. 孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 .
    10. 于博,陈光波. 基于组合赋权-物元可拓模型的煤矿内因火灾安全评价. 煤矿安全. 2023(02): 61-70 .
    11. 李光宇,李守军,缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法. 矿业安全与环保. 2023(02): 82-87 .
    12. 程开. 选煤厂机械搅拌式浮选机智能控制系统的研究. 煤炭加工与综合利用. 2023(06): 6-12 .
    13. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
    14. 郭玉柱. 斜沟煤矿火灾应急隔离系统设计研究. 煤. 2022(02): 13-16+29 .
    15. 范涌高,周怡敏,张玉玺,闫宋锟,朱丽娜. 井下复合定位系统框架. 计算机测量与控制. 2022(02): 201-206 .
    16. 孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
    17. 孙继平,李小伟,徐旭,张森森. 矿井电火花及热动力灾害紫外图像感知方法研究. 工矿自动化. 2022(04): 1-4+95 . 本站查看
    18. 王勇,胡斌,康渴楠,孔庆东,葛小菡,李辰阳. 智能传感器在消防装备中的应用现状分析. 中国安全科学学报. 2022(S1): 184-188 .
    19. 高懿伟,郭志国,张俊,郑彪华. 我国金属矿山热动力灾害防治技术研究现状与展望. 金属矿山. 2022(12): 196-204 .
    20. 肖国强,范新丽,马砺,骆伟,吴明明. 矿井火灾环境信息动态感知与应急隔离系统. 工矿自动化. 2021(09): 65-69 . 本站查看
    21. 刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (279) PDF downloads (29) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return