Citation: | LI Yan, NAN Xinyuan, LIN Wanke. Risk prediction of coal and gas outburst[J]. Journal of Mine Automation,2022,48(3):99-106. DOI: 10.13272/j.issn.1671-251x.2021070072 |
[1] |
李长兴,关金锋,李回贵,等. 煤与瓦斯突出预测的Bayes−逐步判别分析模型及应用[J]. 中国矿业,2020,29(2):117-123.
LI Changxing,GUAN Jinfeng,LI Huigui,et al. Bayes stepwise discriminant analysis model and application of coal and gas outburst prediction[J]. China Mining Magazine,2020,29(2):117-123.
|
[2] |
舒龙勇,王凯,齐庆新,等. 煤与瓦斯突出关键结构体致灾机制[J]. 岩石力学与工程学报,2017,36(2):347-356.
SHU Longyong,WANG Kai,QI Qingxin,et al. Key structural body theory of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):347-356.
|
[3] |
付华,丰胜成,高振彪,等. 基于双耦合算法的煤与瓦斯突出预测模型[J]. 中国安全科学学报,2018,28(3):84-89.
FU Hua,FENG Shengcheng,GAO Zhenbiao,et al. Study on double coupling algorithm based model for coal and gas outburst prediction[J]. China Safety Science Journal,2018,28(3):84-89.
|
[4] |
LIU Haibo,DONG Yujie,WANG Fuzhong,et al. Gas outburst prediction model using improved entropy weight grey correlation analysis and IPSO-LSSVM[J]. Mathematical Problems in Engineering,2020,152:63-72.
|
[5] |
WU Yaqin,GAO Ronglei,YANG Jinzhen. Prediction of coal and gas outburst: a method based on the BP neural network optimized by GASA[J]. Process Safety and Environmental Protection,2019,133:64-72.
|
[6] |
郑晓亮,来文豪,薛生. MI和SVM算法在煤与瓦斯突出预测中的应用[J]. 中国安全科学学报,2021,31(1):75-80.
ZHENG Xiaoliang,LAI Wenhao,XUE Sheng. Application of MI and SVM in coal and gas outburst prediction[J]. China Safety Science Journal,2021,31(1):75-80.
|
[7] |
韩永亮,李胜,胡海永,等. 基于改进的GA−ELM煤与瓦斯突出预测模型[J]. 地下空间与工程学报,2019,15(6):1895-1902.
HAN Yongliang,LI Sheng,HU Haiyong,et al. Prediction model of coal and gas outburst based on optimized GA-ELM[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1895-1902.
|
[8] |
温廷新,于凤娥,邵良杉. 基于灰色关联熵的煤与瓦斯突出概率神经网络预测模型[J]. 计算机应用研究,2018,35(11):3326-3329.
WEN Tingxin,YU Feng'e,SHAO Liangshan. Probabilistic neural network prediction model of coal and gas outburst based on grey relational entropy[J]. Application Research of Computers,2018,35(11):3326-3329.
|
[9] |
吴雅琴,李惠君,徐丹妮. 基于IPSO−Powell优化SVM的煤与瓦斯突出预测算法[J]. 工矿自动化,2020,46(4):46-53.
WU Yaqin,LI Huijun,XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Industry and Mine Automation,2020,46(4):46-53.
|
[10] |
BIAN Xiaoqiang,ZHANG Qian,ZHANG Lu,et al. A grey wolf optimizer-based support vector machine for the solubility of aromatic compounds in supercritical carbon dioxide[J]. Chemical Engineering Research and Design,2017,123:284-294. DOI: 10.1016/j.cherd.2017.05.008
|
[11] |
冯璋,裴东,王维. 基于改进灰狼算法优化支持向量机的人脸识别[J]. 计算机工程与科学,2019,41(6):1057-1063.
FENG Zhang,PEI Dong,WANG Wei. Face recognition by support vector machine optimized by an improved grey wolf algorithm[J]. Computer Engineering & Science,2019,41(6):1057-1063.
|
[12] |
陈闯,RYAD Chellali,邢尹. 改进GWO优化SVM的语音情感识别研究[J]. 计算机工程与应用,2018,54(16):113-118.
CHEN Chuang,RYAD Chellali,XING Yin. Research on speech emotion recognition based on improved GWO optimization SVM[J]. Computer Engineering and Applications,2018,54(16):113-118.
|
[13] |
王志华,罗齐,刘绍廷. 基于混沌灰狼优化算法的SVM分类器研究[J]. 计算机工程与科学,2018,40(11):2040-2046.
WANG Zhihua,LUO Qi,LIU Shaoting. A SVM classifier based on chaotic gray wolf optimization algorithm[J]. Computer Engineering & Science,2018,40(11):2040-2046.
|
[14] |
郑直,张华钦,潘月. 基于改进鲸鱼算法优化LSTM的滚动轴承故障诊断[J]. 振动与冲击,2021,40(7):274-280.
ZHENG Zhi,ZHANG Huaqin,PAN Yue. Rolling bearing fault diagnosis based on IWOA-LSTM[J]. Journal of Vibration and Shock,2021,40(7):274-280.
|
[15] |
LIU Haibo,DONG Yujie,WANG Fuzhong. Gas outburst prediction model using rough set and support vector machine[J]. Evolutionary Intelligence,2020,7:1-9.
|
[16] |
ZHANG Chaolin,WANG Enyuan,XU Jiang,et al. A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal[J]. Fuel,2021,287:1-10.
|
[17] |
李冬,彭苏萍,杜文凤,等. 煤层瓦斯突出危险区综合预测方法[J]. 煤炭学报,2018,43(2):466-472.
LI Dong,PENG Suping,DU Wenfeng,et al. Comprehensive prediction method of coal seam gas outburst danger zone[J]. Journal of China Coal Society,2018,43(2):466-472.
|
[18] |
陈恋,袁梅,高强,等. 主成分−费歇尔判别模型在煤与瓦斯突出等级预测中的应用[J]. 工矿自动化,2020,46(3):55-62.
CHEN Lian,YUAN Mei,GAO Qiang,et al. Application of principal component-Fisher discrimination model in grade prediction of coal and gas outburst[J]. Industry and Mine Automation,2020,46(3):55-62.
|
[19] |
李映洁. 多源信息融合技术在煤与瓦斯突出预测中的应用研究[D]. 徐州: 中国矿业大学, 2018.
LI Yingjie. Study on the application of multi-source information fusion technology in the coal and gas outburst prediction[D]. Xuzhou: China University of Mining and Technology, 2018.
|
[20] |
李杰. 煤与瓦斯突出IGSA−SVM预测模型及其应用[D]. 太原: 太原理工大学, 2016.
LI Jie. Coal and gas outburst IGSA-SVM prediction model and its application[D]. Taiyuan: Taiyuan University of Technology, 2016.
|
[21] |
朱政江. 基于神经网络和粒子群优化SVM的煤与瓦斯突出预测模型研究[D]. 太原: 太原理工大学, 2014.
ZHU Zhengjiang. Research of coal and gas outburst prediction models based on neural network and PSO-SVM [D]. Taiyuan: Taiyuan University of Technology, 2014.
|
1. |
赵冬. 基于机器视觉的煤矿井下火灾检测方法. 自动化应用. 2025(01): 101-104+107 .
![]() | |
2. |
孙继平,李小伟. 基于图像顺滑度的矿井外因火灾识别及抗干扰方法研究. 中国矿业大学学报. 2025(01): 215-226 .
![]() | |
3. |
耿哲,张德胜. 煤矿井下区域防灭火系统的设计. 矿山机械. 2025(03): 50-55 .
![]() | |
4. |
孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 .
![]() | |
5. |
王炎林,裴晓东,王凯,徐光. 基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究. 工矿自动化. 2025(03): 122-130 .
![]() | |
6. |
胡纪年,李雨成,李俊桥,张巍. 基于CNN的矿井外因火灾火源定位方法研究. 中国安全生产科学技术. 2024(03): 134-140 .
![]() | |
7. |
李海龙. 基于机器视觉的煤矿用输送带跑偏检测方法. 矿山机械. 2024(05): 29-33 .
![]() | |
8. |
徐晓敏,朱正磊,刘鑫,郭青玄,赵一夫. 基于无人机监测的电力火灾起火点定位方法研究. 电力大数据. 2024(03): 50-56 .
![]() | |
9. |
孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 .
![]() | |
10. |
于博,陈光波. 基于组合赋权-物元可拓模型的煤矿内因火灾安全评价. 煤矿安全. 2023(02): 61-70 .
![]() | |
11. |
李光宇,李守军,缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法. 矿业安全与环保. 2023(02): 82-87 .
![]() | |
12. |
程开. 选煤厂机械搅拌式浮选机智能控制系统的研究. 煤炭加工与综合利用. 2023(06): 6-12 .
![]() | |
13. |
孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 .
![]() | |
14. |
郭玉柱. 斜沟煤矿火灾应急隔离系统设计研究. 煤. 2022(02): 13-16+29 .
![]() | |
15. |
范涌高,周怡敏,张玉玺,闫宋锟,朱丽娜. 井下复合定位系统框架. 计算机测量与控制. 2022(02): 201-206 .
![]() | |
16. |
孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
![]() | |
17. |
孙继平,李小伟,徐旭,张森森. 矿井电火花及热动力灾害紫外图像感知方法研究. 工矿自动化. 2022(04): 1-4+95 .
![]() | |
18. |
王勇,胡斌,康渴楠,孔庆东,葛小菡,李辰阳. 智能传感器在消防装备中的应用现状分析. 中国安全科学学报. 2022(S1): 184-188 .
![]() | |
19. |
高懿伟,郭志国,张俊,郑彪华. 我国金属矿山热动力灾害防治技术研究现状与展望. 金属矿山. 2022(12): 196-204 .
![]() | |
20. |
肖国强,范新丽,马砺,骆伟,吴明明. 矿井火灾环境信息动态感知与应急隔离系统. 工矿自动化. 2021(09): 65-69 .
![]() | |
21. |
刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 .
![]() |