Citation: | WANG Yanlin, PEI Xiaodong, WANG Kai, et al. Research on early fire source identification and anti-interference methods in mines based on dual-spectrum imaging technology[J]. Journal of Mine Automation,2025,51(3):122-130. DOI: 10.13272/j.issn.1671-251x.2024120060 |
Existing image analysis-based methods for exogenous mine fire detection are affected by complex mining environments and interference sources. Single-modal methods tend to misjudge light sources as fire sources, while multi-modal methods fail to utilize temperature information for fire source identification. Additionally, both methods have low identification accuracy under dust conditions. To address the above issues, an early fire source identification and anti-interference method for mines based on dual-spectrum imaging technology was proposed. First, the YOLOv10 model was used for real-time fire source detection on visible light images, and infrared thermal imaging was employed to obtain temperature distribution data. Then, Canny edge detection and image binarization preprocessing were applied to eliminate imaging differences between visible light and infrared images. Finally, the pHash algorithm was used to calculate the Hamming distance of the edge hash values between visible light and infrared images, and a threshold (Hamming distance≤25) was set to determine whether they represented the same fire source, thus effectively distinguishing fire sources from interference sources. The experimental results showed that under conditions without dust or interference sources, the accuracy of the early fire source detection and anti-interference method based on dual-spectrum imaging technology reached 98%, with a recall rate of 94%, outperforming the single-modal YOLOv10 (accuracy 97%, recall rate 86%). Under dust interference conditions, when 33% of the camera surface was covered by dust, the accuracy and recall rates were 85% and 80%, respectively. When 66% of the camera surface was covered by dust, the accuracy the recall rate were 70% and 65%, which were superior to both single-modal and multi-modal methods.
[1] |
邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,52(1):154-177.
DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,52(1):154-177.
|
[2] |
邓军,张琦,陈炜乐,等. 矿井煤自燃灾害监测预警技术及发展趋势[J]. 煤矿安全,2024,55(3):99-110.
DENG Jun,ZHANG Qi,CNEN Weile,et al. Coal spontaneous combustion disaster monitoring and early warning technologies and development trend for coal mines[J]. Safety in Coal Mines,2024,55(3):99-110.
|
[3] |
孙继平,李小伟,徐旭,等. 矿井电火花及热动力灾害紫外图像感知方法研究[J]. 工矿自动化,2022,48(4):1-4,95.
SUN Jiping,LI Xiaowei,XU Xu,et al. Research on ultraviolet image perception method of mine electric spark and thermal power disaster[J]. Journal of Mine Automation,2022,48(4):1-4,95.
|
[4] |
王远声,景国勋,郭绍帅,等. 煤矿瓦斯爆炸灾害的复杂网络分析与断链减灾措施研究[J/OL]. 安全与环境学报:1-11[2024-11-24]. https://doi.org/10.13637/j.issn.1009-6094.2024.0569.
WAGN Yuansheng,JING Guoxun,GUO Shaoshuai,et al. Complex network analysis for disaster chain evaluation and mitigation of coal mine gas explosions[J/OL]. Journal of Safety and Environment:1-11[2024-11-24]. https://doi.org/10.13637/j.issn.1009-6094.2024.0569.
|
[5] |
张洪亮. 基于虚拟现实技术的煤矿胶带火灾模拟系统[J]. 煤矿安全,2014,45(4):128-131.
ZHANG Hongliang. Coal mine belt fire simulation system based on virtual reality technology[J]. Safety in Coal Mines,2014,45(4):128-131.
|
[6] |
赵文军. 矿井火灾爆炸危险性评估与防控技术研究[J]. 能源与节能,2025(2):179-181. DOI: 10.3969/j.issn.2095-0802.2025.02.048
ZHAO Wenjun. Mine fire and explosion risk assessment and prevention and control technologies[J]. Energy and Energy Conservation,2025(2):179-181. DOI: 10.3969/j.issn.2095-0802.2025.02.048
|
[7] |
徐宏宇,续婷. 一种基于颜色和纹理的优化SVM火灾识别方法[J]. 沈阳航空航天大学学报,2021,38(4):54-60. DOI: 10.3969/j.issn.2095-1248.2021.04.007
XU Hongyu,XU Ting. A color/texture-based improved SVM for fire recognition[J]. Journal of Shenyang Aerospace University,2021,38(4):54-60. DOI: 10.3969/j.issn.2095-1248.2021.04.007
|
[8] |
熊昊,李伟. 基于SVM的视频火焰检测算法[J]. 传感器与微系统,2020,39(1):143-145,149.
XIONG Hao,LI Wei. Video flame detection algorithm based on SVM[J]. Transducer and Microsystem Technologies,2020,39(1):143-145,149.
|
[9] |
王亚,张宝峰. 基于显著性检测的红外森林火灾监测系统[J]. 消防科学与技术,2018,37(12):1700-1703. DOI: 10.3969/j.issn.1009-0029.2018.12.029
WANG Ya,ZHANG Baofeng. Infrared forest fire monitoring system based on saliency detection[J]. Fire Science and Technology,2018,37(12):1700-1703. DOI: 10.3969/j.issn.1009-0029.2018.12.029
|
[10] |
王思嘉,裴海龙. 基于火焰图像红外动态特征的早期火灾识别算法[J]. 现代电子技术,2010,33(8):104-105,110. DOI: 10.3969/j.issn.1004-373X.2010.08.033
WANG Sijia,PEI Hailong. Algorithm for early fire recognition based on infrared dynamic characteristics of flame images[J]. Modern Electronics Technique,2010,33(8):104-105,110. DOI: 10.3969/j.issn.1004-373X.2010.08.033
|
[11] |
刘培江,董辉,宋子刚,等. 基于视频图像处理技术的火焰识别算法[J]. 热能动力工程,2021,36(3):64-71.
LIU Peijiang,DONG Hui,SONG Zigang,et al. Flame recognition algorithm based on video and image processing technology[J]. Journal of Engineering for Thermal Energy and Power,2021,36(3):64-71.
|
[12] |
孙继平,崔佳伟. 矿井外因火灾感知方法[J]. 工矿自动化,2021,47(4):1-5,38.
SUN Jiping,CUI Jiawei. Mine external fire sensing method[J]. Industry and Mine Automation,2021,47(4):1-5,38.
|
[13] |
孙继平,李月. 基于双目视觉的矿井外因火灾感知与定位方法[J]. 工矿自动化,2021,47(6):12-16,78.
SUN Jiping,LI Yue. Binocular vision-based perception and positioning method of mine external fire[J]. Industry and Mine Automation,2021,47(6):12-16,78.
|
[14] |
韩斌,吴一全,宋昱. 基于改进CV模型的煤矿井下早期火灾图像分割[J]. 煤炭学报,2017,42(6):1620-1627.
HAN Bin,WU Yiquan,SONG Yu. Segmentation of early fire image of mine based on improved CV model[J]. Journal of China Coal Society,2017,42(6):1620-1627.
|
[15] |
梁运涛,王伟. 矿井外因火灾监测预警与智能防控技术[J/OL]. 矿业安全与环保:1-8[2024-11-17]. http://kns.cnki.net/kcms/detail/50.1062.TD.20241022.1004.002.html.
LIANG Yuntao,WANG Wei. Mine exogenous fire monitoring and early warning and intelligent prevention and controltechnology[J/OL]. Mining Safety & Environmental Protection:1-8[2024-11-17]. http://kns.cnki.net/kcms/detail/50.1062.TD.20241022.1004.002.html.
|
[16] |
范伟强. 矿井外因火灾双光谱图像监测方法研究[D]. 北京:中国矿业大学(北京),2022.
FAN Weiqiang. Study on dual-spectral image monitoring method of mine external fire[D]. Beijing:China University of Mining & Technology-Beijing,2022.
|
[17] |
孙继平,范伟强. 矿井红外热成像远距离测温误差分析与精确测温方法[J]. 煤炭学报,2022,47(4):1709-1722.
SUN Jiping,FAN Weiqiang. Error analysis and accurate temperature measurement method of infrared thermal imaging long-distance temperature measurement in underground mine[J]. Journal of China Coal Society,2022,47(4):1709-1722.
|
[18] |
李益明,卜雄洙,沈樾. 基于红外传感器和图像识别的复合式火焰检测技术研究[J]. 仪表技术,2024(4):39-43,59.
LI Yiming,BU Xiongzhu,SHEN Yue. Research on composite flame detection technology based on infrared sensors and image recognition[J]. Instrumentation Technology,2024(4):39-43, 59.
|
[19] |
孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法[J]. 煤炭学报,2024,49(7):3253-3264.
SUN Jiping,LI Xiaowei. Mine external fire recognition and anti-interference method based on the internal concavity of image[J]. Journal of China Coal Society,2024,49(7):3253-3264 .
|
[20] |
刘汝琪. 基于多模态图像的火灾检测算法研究[D]. 西安:中国科学院大学(中国科学院西安光学精密机械研究所),2022.
LIU Ruqi. Research on fire detection algorithms based on multimodalImages[D]. Xi'an:Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,2022.
|
[21] |
金政北,金贝贝,宋晓辉,等. 改进YOLOv10算法及其在路面坑洼检测中的应用[J/OL]. 计算机应用与软件:1-8[2024-11-24]. http://kns.cnki.net/kcms/detail/31.1260.tp.20250307.0824.002.html.
JIN Zhengbei,JIN Beibei,SONG Xiaohui,et al. Improved YOLOv10 algorithm and its application on pothole detection[J/OL]. Computer Applications and Software:1-8[2024-11-24]. http://kns.cnki.net/kcms/detail/31.1260.tp.20250307.0824.002.html.
|
1. |
雷浩,周德义. 基于工业物联网传感器数据的噪声消除方法研究. 物联网技术. 2025(05): 44-46+51 .
![]() | |
2. |
赵雨润,谢辉,谢光华,温初阳,刘沛鑫. 基于物联网技术的石油勘探作业许可云平台系统设计. 粘接. 2025(05): 123-126+130 .
![]() | |
3. |
逯富强,王荣林,朱文龙,代文亮. 基于5G的智能矿山系统构建与应用. 中国资源综合利用. 2025(04): 29-34 .
![]() | |
4. |
尚伟栋,王海力,张晓霞,王浩,徐华龙. 基于对象模型的煤矿数据采集融合共享系统. 工矿自动化. 2024(01): 17-24+34 .
![]() | |
5. |
尹建辉. 基于工业互联网架构的煤矿瓦斯智能抽采管控系统设计. 工矿自动化. 2024(02): 28-34 .
![]() | |
6. |
邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 .
![]() | |
7. |
张科学,吕鑫淼,郑庆学,王晓玲,李小磊,刘昇,刘伟,李鑫磊,闫星辰,许雯,尹宇航. 基于eNSP的智慧矿山网络防火墙技术研究. 中国煤炭. 2024(08): 94-103 .
![]() | |
8. |
蒋韫旭. 安全智能化监测系统在矿山中的应用. 山东煤炭科技. 2024(08): 153-157 .
![]() | |
9. |
王启飞,赵逸涵,刘帅,刘昊霖,孙英峰,李成武. 煤矿事故大数据驱动的风险治理模式研究综述. 中国安全科学学报. 2024(07): 28-37 .
![]() | |
10. |
江鹤,程德强,乙夫迪,汪鹏,崔文,寇旗旗. 新一代信息技术在智能矿山中的研究与应用综述. 工矿自动化. 2024(11): 1-16 .
![]() | |
11. |
贺耀宜,代左朋,杨耀,屈世甲,张清,孙旭峰,张涛. 采煤工作面CH_4大样本数据感知关键技术及监测模式研究. 工矿自动化. 2024(11): 17-25+91 .
![]() | |
12. |
黄友胜. 矿用定位通信一体化基站设计与实现. 煤矿安全. 2024(12): 229-235 .
![]() | |
13. |
李日平,刘晓明,马少维,陈省,郑永祥,周宇栋. 矿山计量检测数智化建设关键技术研究与应用. 铜业工程. 2024(06): 76-82 .
![]() | |
14. |
贾龙,朱浩,刘斌,田诚,杨皓月,李思雯. 孟村煤矿智能化综合管控平台建设及应用研究. 中国煤炭. 2024(12): 160-166 .
![]() | |
15. |
钟捷芳. 基于物联网的矿用换风机监测系统. 煤炭技术. 2023(01): 268-270 .
![]() | |
16. |
尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路. 煤田地质与勘探. 2023(01): 214-221 .
![]() | |
17. |
杨帆,张沛航,张馨以,代富平,李博,刘水,董伟龙. 金属矿尾矿库远程网络DCS安全预警测控系统. 现代矿业. 2023(02): 188-193 .
![]() | |
18. |
谭章禄,王美君,叶紫涵. 智能化煤矿数据治理体系与关键问题研究. 工矿自动化. 2023(05): 22-29 .
![]() | |
19. |
贺耀宜,陈晓晶,郝振宇,丁磊,高文. 智能矿山低代码工业物联网平台设计. 工矿自动化. 2023(06): 141-148+174 .
![]() | |
20. |
张灵展,颜雷. 工业物联网在矿区作业中的应用. 集成电路应用. 2023(07): 291-293 .
![]() | |
21. |
尹尚先,徐斌,尹慧超,曹敏,丁莹莹,梁满玉. 矿井水防治学科基本架构及内涵. 煤炭科学技术. 2023(07): 24-35 .
![]() | |
22. |
杨新广,于庆潭. 基于物联网技术的微型生化分析仪检测质量监控方法. 自动化技术与应用. 2023(10): 113-116+179 .
![]() | |
23. |
李永勤,王海山,白仕军. 安全集中监测系统在智能矿山中的应用. 工矿自动化. 2023(S2): 47-51 .
![]() | |
24. |
王磊,黄晴,尚伟栋,苌延辉,张晓霞. 面向微服务架构的煤矿生产监控数据采集系统设计. 电子技术应用. 2023(12): 31-37 .
![]() | |
25. |
管小明,李宏俊. 基于支持可验证的物联网感知层信息加密仿真. 计算机仿真. 2023(11): 357-360+441 .
![]() | |
26. |
王赟,钟武剑. 基于iFIX的露天煤矿综合自动化开采方法研究. 自动化与仪器仪表. 2023(12): 214-217+222 .
![]() | |
27. |
杨帆,李博,刘水. 基于CJ2M PLC的磨矿设备IoT-DCS自动化系统的设计. 矿山机械. 2022(02): 26-31 .
![]() | |
28. |
杨帆,王钰涌,张沛航,李博,刘水. 基于Expert-PID算法的矿山球磨机物联网控制系统的设计. 计算机测量与控制. 2022(03): 120-125 .
![]() | |
29. |
任永珍. 基于物联网技术的饲料企业供应链信息服务平台构建. 饲料研究. 2022(06): 131-134 .
![]() | |
30. |
詹培军. 基于物联网的人工智能技术开发及实际应用. 工程技术研究. 2022(05): 36-38 .
![]() | |
31. |
刘翠. 基于MOOC的翻转课堂教学多元信息展示平台设计. 现代电子技术. 2022(11): 138-142 .
![]() | |
32. |
赵佰亭,庞猛,贾晓芬. 一种深立井井筒数据采集及分析系统设计. 工矿自动化. 2022(05): 118-122 .
![]() | |
33. |
赵开功,张晓蕾,李曼,何盛军. 基于一体化运营综合能源企业智能应急救援技术研究. 中国安全生产科学技术. 2022(05): 235-240 .
![]() | |
34. |
梅舜豪,赵鹏,苏斌,邢书超. 石油工程企业信息化管理平台研究及应用. 石油化工自动化. 2022(03): 60-64 .
![]() | |
35. |
李国民,章鳌,贺耀宜,高文,黄综浏. 智能矿井多元监控数据集成关键技术研究. 工矿自动化. 2022(08): 127-130+146 .
![]() | |
36. |
张立亚,李晨鑫,刘斌,姜玉峰. 矿山物联网区块链机制研究. 工矿自动化. 2022(08): 10-15 .
![]() | |
37. |
崔卫锋,田野,李旭,史云,董博,张晓江. 煤矿综采工作面智能服务大数据决策平台. 煤矿机械. 2022(10): 193-195 .
![]() | |
38. |
刘道玉,程宝军. 基于位置服务的煤矿智能化综合管控平台研究与应用. 中国煤炭. 2022(09): 94-102 .
![]() | |
39. |
邵国荣. 基于智能矿山的煤矿机电技术管理创新. 能源与节能. 2022(12): 222-224 .
![]() | |
40. |
贺耀宜,高文,杨耀,荆诚,朱沙沙,陈醒. 智能矿山多元监控信息融合与联动研究. 工矿自动化. 2022(11): 11-19 .
![]() | |
41. |
贾文琪,包翔宇,单成伟. 煤矿辅助运输管控一体化建设的问题与对策. 煤矿机电. 2022(06): 31-35 .
![]() | |
42. |
林逸朋. 基于物联网的井上井下联控体系构建. 陕西煤炭. 2021(05): 62-64+76 .
![]() | |
43. |
齐景嘉,李蕾. 论金融科技对实体经济的影响——基于上市公司股票数据的分析. 学术交流. 2021(07): 107-118 .
![]() | |
44. |
高利锋. 基于智能矿山的煤矿机电技术管理创新. 内蒙古煤炭经济. 2021(22): 86-88 .
![]() |