XU Hui, ZHANG Xuejun, LI Jilai. Hardware in the loop simulation test system for belt conveyor control system[J]. Journal of Mine Automation, 2017, 43(6): 52-55. DOI: 10.13272/j.issn.1671-251x.2017.06.012
Citation: XU Hui, ZHANG Xuejun, LI Jilai. Hardware in the loop simulation test system for belt conveyor control system[J]. Journal of Mine Automation, 2017, 43(6): 52-55. DOI: 10.13272/j.issn.1671-251x.2017.06.012

Hardware in the loop simulation test system for belt conveyor control system

More Information
  • Coal mine environment need to be simulated in development process of belt conveyor control system. For high cost of building physical environment wihch was the same as coal mine environment in laboratory, a hardware in the loop simulation test system for belt conveyor control system was designed. Combining with configuration parameters such as driving mode and driving device of belt conveyor, control strategy of belt conveyor control system is carried out by collecting running status of belt conveyor, environment parameters and transportation condition simulated by hardware platform. According to control input of belt conveyor control system, running status of belt conveyor is iterated through dynamic model of belt conveyor, and iteration result is fed back to belt conveyor control system through the hardware platform, so as to realize closed-loop feedback control and performance verification of belt conveyor control system. The simulation test result verifies validity of the system.
  • Related Articles

    [1]ZHANG Xuhui, LIU Yanhui, YANG Wenjuan, ZHANG Chao, DU Yuyang, YANG Junhao, YANG Wenyu. Research on a digital twin driven virtual debugging method for roadway automatic forming cutting[J]. Journal of Mine Automation, 2024, 50(7): 1-11, 31. DOI: 10.13272/j.issn.1671-251x.18186
    [2]XU Xiangqian, JIAN Kuo, WANG Ning, LI Shengli. Cutting control of boom-type roadheader considering coal rock hardness[J]. Journal of Mine Automation, 2024, 50(4): 153-158. DOI: 10.13272/j.issn.1671-251x.18171
    [3]ZHANG Chao, ZHANG Xuhui, ZHANG Kaixin, XIE Nan, ZHOU Chuang. Digital twin driven remote automatic cutting control technology of roadheader[J]. Journal of Mine Automation, 2020, 46(9): 15-20. DOI: 10.13272/j.issn.1671-251x.17640
    [4]YANG Wenjuan, ZHANG Xuhui, ZHANG Chao, ZHAO Jianxun, MA Hongwei. Research on intelligent cutting control system for roadway forming of boom-type tunneling robot[J]. Journal of Mine Automation, 2019, 45(9): 40-46. DOI: 10.13272/j.issn.1671-251x.17445
    [5]ZHANG Xuhui, LIU Yongwei, YANG Wenjuan, MAO Qinghua, WANG Dongman, ZHOU Ying. Vision measurement system for cutting head attitude of mine-used boom-type roadheader[J]. Journal of Mine Automation, 2018, 44(8): 63-67. DOI: 10.13272/j.issn.1671-251x.2018010067
    [6]WANG Suyu, TIAN Jie, WU Miao. Analysis of automatic cutting section boundary control error for longitudinal roadheader[J]. Journal of Mine Automation, 2016, 42(5): 14-18. DOI: 10.13272/j.issn.1671-251x.2016.05.004
    [7]TIAN Jie, WANG Hongyao, WU Miao. Dynamic characteristics analysis of automatic cutting and profiling control system for roadheader[J]. Journal of Mine Automation, 2015, 41(6): 40-44. DOI: 10.13272/j.issn.1671-251x.2015.06.010
    [8]LU Zhongliang, FU Teng, FU Tong. Design of an instantaneous monitoring system of mine roadway sectio[J]. Journal of Mine Automation, 2015, 41(1): 80-84. DOI: 10.13272/j.issn.1671-251x.2015.01.020
    [9]MU Jing, DU Yi-bo, TIAN Jie, LI Rui, WU Miao. Analysis of Extreme Position of Cutting Section of Boom-type Roadheader[J]. Journal of Mine Automation, 2011, 37(10): 67-69.
    [10]WEI Jing-sheng~(, 2), WU Miao~. Research of Intelligent Control System with Automatic Forming and Constant Power Cutting of Tunneling Machine and Its Applicatio[J]. Journal of Mine Automation, 2009, 35(7): 118-121.
  • Cited by

    Periodical cited type(11)

    1. 邓军, 刘登祯. 煤自燃监测预警技术研究进展及展望. 工矿自动化. 2025(07) 本站查看
    2. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 .
    3. 王利民,朱立江,刘金鸽. 基于随机森林回归模型的煤胶质层指数预测. 中国科技论文. 2025(03): 267-276 .
    4. 翟小伟,王博,蒋学明,侯树宏,郝乐. 基于DBO-BP神经网络的采空区煤温预测方法及应用. 煤矿安全. 2025(04): 75-81 .
    5. 王利民,朱立江,刘金鸽. 基于太赫兹光谱和随机森林算法的煤挥发分含量预测. 中国无机分析化学. 2025(06): 867-873 .
    6. 邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 .
    7. 王刚,杨宝东,徐浩,孙路路,黄启铭. 煤自燃程序升温实验及其在实验教学中的应用. 实验技术与管理. 2024(03): 225-231 .
    8. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 .
    9. 杨英兵,邢真强,张运增,郭佳策,李龙,鹿文勇,陈明浩. 煤自燃全阶段防控研究进展及趋势分析. 煤矿安全. 2024(07): 85-101 .
    10. 王玉怀,胡硕鹏,朱永兴,窦静文,张烜乐,张思佳. 机器学习在煤自燃预测预报中的应用现状及展望. 中国煤炭. 2024(10): 98-103 .
    11. 童保国,姜福领,毕寸光,王亮,田坤云. 基于LSTM改进Transformer的煤自燃温度预测模型. 金属矿山. 2024(12): 275-280 .

    Other cited types(3)

Catalog

    LI Jilai

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (67) PDF downloads (17) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return