YANG Wenjuan, ZHANG Xuhui, ZHANG Chao, ZHAO Jianxun, MA Hongwei. Research on intelligent cutting control system for roadway forming of boom-type tunneling robot[J]. Journal of Mine Automation, 2019, 45(9): 40-46. DOI: 10.13272/j.issn.1671-251x.17445
Citation: YANG Wenjuan, ZHANG Xuhui, ZHANG Chao, ZHAO Jianxun, MA Hongwei. Research on intelligent cutting control system for roadway forming of boom-type tunneling robot[J]. Journal of Mine Automation, 2019, 45(9): 40-46. DOI: 10.13272/j.issn.1671-251x.17445

Research on intelligent cutting control system for roadway forming of boom-type tunneling robot

More Information
  • In view of problems such as low automation degree, low tunneling efficiency and poor roadway forming quality in the tunneling process of underground coal mining, an intelligent cutting control system for roadway forming of boom-type tunneling robot was proposed.According to the size of roadway and the cutting process requirement, based on the joint space trajectory planning method of boom-type tunneling robot based on cubic polynomial smooth function, the system determines the smooth function parameters of trajectory planning by establishing the boom-type tunneling robot coordinate system and solving forward and inverse kinematics problems of boom-type tunneling robot. After planning cutting trajectory, taking the pose data of cutting head of boom-type tunneling robot obtained by visual positioning method as feedback quantity, the cutting trajectory control quantity was calculated in real time by cutting trajectory control algorithm based on feedback linearized integral sliding mode controller. A feedback control system based on the planning track points and visual measurement position point was built to realize dynamic control of cutting process of roadway forming of boom-type tunneling robot. The experimental results show that the system can realize intelligent control of cutting process of roadway forming of boom-type tunneling robot, and has high positioning accuracy and good stability, and trajectory tracking error is less than 25.61 mm, can meet the demand of roadway forming quality.
  • Related Articles

    [1]LIU Yi, WANG Kexiang, CHENG Hao, LI Changxin, HU Chengxi, ZHAO Lili. Precise underground visual positioning method based on optical beacons[J]. Journal of Mine Automation, 2025, 51(7): 135-141. DOI: 10.13272/j.issn.1671-251x.2025060005
    [2]ZHANG Qian, GUI Zhenzhao. Speed regulation of mine-used electric locomotive based on improved model reference adaptive system[J]. Journal of Mine Automation, 2019, 45(4): 63-66. DOI: 10.13272/j.issn.1671-251x.17393
    [3]YAO Shuncai, MA Tiehua, LI Feng. Design of nonlinear sliding mode controller for hydraulic fracturing of coalbed methane[J]. Journal of Mine Automation, 2016, 42(3): 69-74. DOI: 10.13272/j.issn.1671-251x.2016.03.016
    [4]GONG Shangfu, YANG Na. Chain tension control of scraper conveyor based on sliding mode control[J]. Journal of Mine Automation, 2015, 41(2): 57-60. DOI: 10.13272/j.issn.1671-251x.2015.02.016
    [5]LIU Huibo, LI Zhaoyang. Integral inversion fuzzy sliding mode control of brushless DC motor[J]. Journal of Mine Automation, 2014, 40(3): 64-69. DOI: 10.13272/j.issn.1671-251x.2014.03.018
    [6]MIAO Jinli, YU Xiang. Application of improved equivalent sliding mode controller in vector control system of asynchronous motor[J]. Journal of Mine Automation, 2014, 40(1): 72-75. DOI: 10.13272/j.issn.1671-251x.2014.01.019
    [7]WANG Wu. Simulation of sliding-mode control of wind energy conversion system of permanent magnet synchronous generator[J]. Journal of Mine Automation, 2013, 39(8): 84-87. DOI: 10.7526/j.issn.1671-251X.2013.08.022
    [8]ZHANG Ming-guang, HOU Zhi-jun, LIU Miao. Active Power Filter for Three-phase Four-wire System Based on Sliding Mode Control[J]. Journal of Mine Automation, 2010, 36(8): 81-84.
    [9]LI Yuan~(, 2), HE Feng-you~. Research of Backstepping Control and Sliding-mode Control System for Permanent Magnet Synchronous Motor[J]. Journal of Mine Automation, 2009, 35(8): 72-75.
    [10]WANG Wei, GUO Feng-yi, CHEN Peng. Research of Direct Torque Control System for PMSM Based on Sliding Mode Control[J]. Journal of Mine Automation, 2009, 35(4): 24-28.
  • Cited by

    Periodical cited type(30)

    1. 李英娜,安博烁,崔彦平,刘百健,孔瑞. 基于单目视觉的悬臂式掘进机定位方法. 矿山机械. 2025(02): 1-7 .
    2. 王岩,寇浩楠,张旭辉,魏世睿,杨志伟,赵友军. 数字孪生驱动的智能掘进设备虚实交互控制方法. 中国矿业大学学报. 2025(02): 330-342 .
    3. 陈利. 基于BIM技术深度策划的隧道掘进智能控制技术研究. 铁道勘察. 2024(03): 180-187 .
    4. 王朋朋,李瑞,刘鑫,李响,付常亮. 光学靶标遮挡条件下掘进机定位解算方法. 工矿自动化. 2024(05): 118-124 . 本站查看
    5. 王伟. EBZ260型掘进机的智能化改造及应用分析. 矿业装备. 2024(05): 183-185 .
    6. 周开平. 矿用EBZ220型掘进机行驶控制系统设计研究. 煤炭工程. 2023(05): 183-187 .
    7. 王豪. 变频调速技术在悬臂式掘进机上的应用分析. 西部探矿工程. 2023(10): 126-128 .
    8. 张旭辉,杨文娟,薛旭升,张超,万继成,毛清华,雷孟宇,杜昱阳,马宏伟,赵友军,李晓鹏,胡成军,田胜利. 煤矿远程智能掘进面临的挑战与研究进展. 煤炭学报. 2022(01): 579-597 .
    9. 曹辉. 掘进机行走系统模糊控制策略的设计. 机械管理开发. 2022(01): 256-257+260 .
    10. 郭一楠,黄遥,巩敦卫,夏煌煌. 巷道断面成形轨迹的多目标蚁群规划方法. 华中科技大学学报(自然科学版). 2022(05): 115-122 .
    11. 张磊,周开平,张宁波,孙红杰,王利欣. 悬臂式掘进机自动截割控制系统研究. 金属矿山. 2022(06): 144-149 .
    12. 李晓宙. 巷道悬臂式掘进机控制平台模拟研究. 机械管理开发. 2022(06): 1-3+6 .
    13. 张旭辉,沈奇峰,杨文娟,张超,毛清华,王恒,黄梦瑶. 基于三激光点标靶的掘进机机身视觉定位技术研究. 电子测量与仪器学报. 2022(06): 178-186 .
    14. 唐耀伟. 基于嵌入式软PLC掘进机智能控制平台设计研究. 机械管理开发. 2022(08): 252-254 .
    15. 周开平. 变频调速技术在悬臂式掘进机上的应用. 煤矿机械. 2022(09): 147-149 .
    16. 吕文渊. GA-BP联合模糊PID的掘进机截割臂摆速控制. 煤炭技术. 2022(10): 230-233 .
    17. 王岩,张旭辉,曹现刚,赵友军,杨文娟,杜昱阳,石硕. 掘进工作面数字孪生体构建与平行智能控制方法. 煤炭学报. 2022(S1): 384-394 .
    18. 刘若涵,刘永立. 栅格法与Dijkstra算法的掘进机截割轨迹规划. 黑龙江科技大学学报. 2021(01): 60-67 .
    19. 张旭辉,张超,王妙云,王岩,杜昱阳,毛清华,吕欣媛. 数字孪生驱动的悬臂式掘进机虚拟操控技术. 计算机集成制造系统. 2021(06): 1617-1628 .
    20. 马宏伟,王鹏,王世斌,毛清华,石增武,夏晶,杨征,薛旭升,王川伟. 煤矿掘进机器人系统智能并行协同控制方法. 煤炭学报. 2021(07): 2057-2067 .
    21. 韩艳赞,史增芳. 基于ABAQUS的掘进机截割臂载荷分析与研究. 煤炭技术. 2021(09): 174-176 .
    22. 仝慧君. 掘进工作面巷道成形控制研究. 山西冶金. 2021(05): 276-277 .
    23. 宋国栋,魏立科,马宏伟,付霁野,刘希梁. 六轴式小臂机器人运动学理论研究及其在掘锚作业中的应用. 煤炭学报. 2021(S2): 1114-1123 .
    24. 雷孟宇,张旭辉,杨文娟,沈奇峰,张超,万继成,王恒. 煤矿掘进装备视觉位姿检测与控制研究现状与趋势. 煤炭学报. 2021(S2): 1135-1148 .
    25. 齐静. 掘进机截割控制系统的设计. 机械管理开发. 2020(06): 192-193+287 .
    26. 韩艳赞,史增芳. 基于DSP+CPLD的悬臂式掘进机智能控制系统设计. 煤矿机械. 2020(09): 20-22 .
    27. 陈聪健. 船舶航行轨迹自动化控制中PLC技术研究. 舰船科学技术. 2020(16): 40-42 .
    28. 陈隆. 以DSP为核心的悬臂式掘进机控制系统设计. 机械管理开发. 2020(10): 241-243 .
    29. 甄伟. 综掘巷道成形不规则的影响因素及对策分析. 中国石油和化工标准与质量. 2020(19): 132-134 .
    30. 薛旭升,张旭辉,毛清华,郑健康,王曼. 基于双目视觉的掘进机器人定位定向方法研究. 西安科技大学学报. 2020(05): 781-789 .

    Other cited types(10)

Catalog

    MA Hongwei

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (101) PDF downloads (23) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return