LU Bingjuan, JI Xuande, GE Yunwang. An improved method of direct torque control of induction motor[J]. Journal of Mine Automation, 2014, 40(8): 49-53. DOI: 10.13272/j.issn.1671-251x.2014.08.013
Citation: LU Bingjuan, JI Xuande, GE Yunwang. An improved method of direct torque control of induction motor[J]. Journal of Mine Automation, 2014, 40(8): 49-53. DOI: 10.13272/j.issn.1671-251x.2014.08.013

An improved method of direct torque control of induction motor

More Information
  • In view of shortcomings of traditional direct torque control method of induction motor that torque and flux linkage have large pulsation and switching frequency is unfixed, the paper put forward an improved direct torque control method with space vector modulation for induction motor. The method uses torque-angle closed-loop control to achieve decoupling of flux linkage magnitude and phase of stator, so as to obtain reference voltage space vector and realize control of flux error and torque error. The simulation results show that the method can effectively overcome the shortcomings of traditional direct torque control method, and get good dynamic response performance.
  • Related Articles

    [1]WANG Xia, MENG Guangrui. Underground pedestrian recognition algorithm based on convolutional neural network[J]. Journal of Mine Automation, 2024, 50(S2): 237-238,245.
    [2]LI Zhihang. Application of convolutional networks in 5G network performance testing of open pit mines[J]. Journal of Mine Automation, 2024, 50(S2): 99-104.
    [3]HAN Zhongli. Mining safety helmet wearing detection based on convolutional neural network[J]. Journal of Mine Automation, 2024, 50(S1): 82-87.
    [4]QIN Yulong, CHENG Jiming, REN Yige, WANG Xiaoqing, ZHAO Qing, AN Cuijuan. Large coal detection for belt conveyors based on improved YOLOv5[J]. Journal of Mine Automation, 2024, 50(2): 57-62, 71. DOI: 10.13272/j.issn.1671-251x.2023080096
    [5]HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065
    [6]ZHENG Daoneng. An improved tiny YOLO v3 rapid recognition model for coal-gangue[J]. Journal of Mine Automation, 2023, 49(4): 113-119. DOI: 10.13272/j.issn.1671-251x.18079
    [7]ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, ZHANG Ao, JI Liang. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation, 2022, 48(11): 39-44. DOI: 10.13272/j.issn.1671-251x.2022060052
    [8]YOU Lei, ZHU Xinglin, CHEN Yu, LUO Minghua. Tear detection method of conveyor belt based on fully convolutional neural network[J]. Journal of Mine Automation, 2022, 48(9): 16-24. DOI: 10.13272/j.issn.1671-251x.2022040087
    [9]SHEN Ke, JI Liang, ZHANG Yuanhao, ZOU Sheng. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Journal of Mine Automation, 2021, 47(11): 107-111. DOI: 10.13272/j.issn.1671-251x.17838
    [10]DU Yun, ZHANG Lulu, PAN Tao. Miners' facial expression recognition method based on convolutional neural network[J]. Journal of Mine Automation, 2018, 44(5): 95-99. DOI: 10.13272/j.issn.1671-251x.17312
  • Cited by

    Periodical cited type(8)

    1. 杨文宇,胡小刚,刘朝,张楷鑫,王嘉宇,上官星驰. 智慧矿山透明瓦斯地质系统平台构建与应用. 能源与环保. 2025(03): 39-45+52 .
    2. 贺炳伟,周明明,门少斌,张龙杰,李荣,李培煊,黄晓俊. 薄煤层井下主运巷道5G基站部署方案设计. 煤炭工程. 2025(03): 18-23 .
    3. 魏春贤,李涛,连昶锦. 时间敏感网络在煤矿的应用. 工矿自动化. 2024(S1): 65-68+99 . 本站查看
    4. 侯录,闫晔,伍宪玉,侯江,赵连喜,高志,邱军军,刘玉明,伍玉娜,谢理,范亦铭. 铀矿井下无线网络技术适用性分析. 铀矿冶. 2024(03): 120-125 .
    5. 唐文明. 井下智能装备研究综述. 价值工程. 2024(30): 155-158 .
    6. 蒋栋. 基于5G技术的煤矿通信网络架构设计. 工矿自动化. 2024(S2): 96-98 . 本站查看
    7. 张荣华. 5G通信技术在智能化煤矿中的应用研究. 低碳世界. 2023(11): 85-87 .
    8. 卓敏敏,赵立厂. 适应矿井线形空间的BLE多连接网络移动节点漫游通信方法. 煤矿机电. 2023(06): 10-14 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (52) PDF downloads (6) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return