XU Jin. Research of coal mine supervision platform based on cloud computing[J]. Journal of Mine Automation, 2014, 40(4): 78-81. DOI: 10.13272/j.issn.1671-251x.2014.04.018
Citation: XU Jin. Research of coal mine supervision platform based on cloud computing[J]. Journal of Mine Automation, 2014, 40(4): 78-81. DOI: 10.13272/j.issn.1671-251x.2014.04.018

Research of coal mine supervision platform based on cloud computing

More Information
  • In order to solve problems existed in current vertical multistage supervision mode, such as repeated construction, unevenness level, multistage data repeated uploading and data fraud, a coal mine supervision platform based on cloud computing was designed. The platform depends on cloud computing technology, adopts unified data storage strategy and processing mechanisms, and uses multi-network for data transmission combining with basic monitoring terminals, so as to provide specialized services and a new parallel and direct supervision model between supervision organizations and coal mines through strict permissions management and good scalability.
  • Related Articles

    [1]HAN Gang, XIE Jiahao, QIN Xiwen, WANG Xing, HAO Xiaoqi. Intelligent assessment method for rockburst hazard areas based on image recognition technology[J]. Journal of Mine Automation, 2023, 49(12): 77-86, 93. DOI: 10.13272/j.issn.1671-251x.2023010047
    [2]YU Haixu, DU Zhiyong, WEI Zhidan, BAO Weiwei, TENG Chunyang, XUE Guoqing, HAI Sufeng. Analysis on the current situation and development trend of unmanned driving technology in mining areas in China[J]. Journal of Mine Automation, 2022, 48(S2): 82-87.
    [3]CAO Yuchao. Mine flood perception based on gray level co-occurrence matrix and regression analysis[J]. Journal of Mine Automation, 2020, 46(9): 94-97. DOI: 10.13272/j.issn.1671-251x.17678
    [4]SUN Jiping, JIN Chunhai. Research on methods of mine flood perception and water source determination[J]. Journal of Mine Automation, 2019, 45(4): 1-5. DOI: 10.13272/j.issn.1671-251x.17416
    [5]SUN Jiping, SUN Yanyu. Research on methods of mine fire monitoring and trend predictio[J]. Journal of Mine Automation, 2019, 45(3): 1-4. DOI: 10.13272/j.issn.1671-251x.17407
    [6]ZHU Yongping, XU Xiaojian. Development trend of mine frequency converter[J]. Journal of Mine Automation, 2017, 43(10): 18-23. DOI: 10.13272/j.issn.1671-251x.2017.10.004
    [7]WANG Jiangrong, LUO Ziqin, ZHAO Rui. Application of projection pursuit in gas emission predictio[J]. Journal of Mine Automation, 2015, 41(4): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.04.022
    [8]WU Zhaofa, WU Xiang, QIAN Jiansheng. Trend prediction of gas concentration based on interpolation trapezoidal fuzzy information granulatio[J]. Journal of Mine Automation, 2014, 40(12): 31-36. DOI: 10.13272/j.issn.1671-251x.2014.12.009
    [9]REN Zhi-ling~, YU Qun~, YU Chao~. Application of CLGA in Impulsion Pressure Predictio[J]. Journal of Mine Automation, 2010, 36(3): 41-45.
    [10]REN Zhi-ling~, YU Qun~, YU Chao~, HAN Wei-qin~. Application of CLGA in Impulsion Pressure Predictio[J]. Journal of Mine Automation, 2010, 36(3): 39-41.
  • Cited by

    Periodical cited type(16)

    1. 承达瑜, 刘国全, 刘鹏, 孟磊, 武择鹏, 母明哲. 一种双向矿井突水蔓延算法及应用. 煤炭与化工. 2025(08)
    2. 孙继平, 龚大立. 煤矿瓦斯抽采和探水作业智能管理系统标准研究制定. 工矿自动化. 2025(06) 本站查看
    3. 连会青,康佳,尹尚先,徐斌,闫国成,夏向学,徐保同. 煤矿井下顶板突水征兆视频智能识别方法研究. 煤矿安全. 2025(04): 166-173 .
    4. 刘艳冬,刘滢,卢兰萍,白峰青,王铁记,卫皓皓. 基于ZOA-CNN-GRU模型的煤层底板突水等级预测. 中国煤炭. 2024(06): 44-51 .
    5. 原超. 煤矿井下可视化智能监控系统. 机械制造. 2024(11): 98-100+59 .
    6. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
    7. 张立亚. 基于5G通信的矿山可视化智能监控技术. 煤炭技术. 2022(01): 191-194 .
    8. 孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
    9. 刘春霞,高强,潘理虎,龚大立. 融合交叉熵损失的3DCNN探水作业动作识别. 计算机工程与设计. 2022(04): 1160-1165 .
    10. 张立亚. 基于图像识别的煤矿井下安全管控技术. 煤矿安全. 2021(02): 165-168 .
    11. 孙继平,余星辰. 基于声音识别的煤矿重特大事故报警方法研究. 工矿自动化. 2021(02): 1-5+44 . 本站查看
    12. 周国慧,储婷婷. 采煤机视频监控系统设计. 电子元器件与信息技术. 2021(04): 27-28 .
    13. 党伟超,张泽杰,白尚旺,龚大力,吴喆峰. 基于改进双流法的井下配电室巡检行为识别. 工矿自动化. 2020(04): 75-80 . 本站查看
    14. 曹玉超. 基于灰度共生矩阵与回归分析的矿井水灾感知. 工矿自动化. 2020(09): 94-97 . 本站查看
    15. 黄骁骏. 基于图像处理的滑块验证码模拟验证研究. 电子技术. 2020(05): 16-19 .
    16. 曹玉超. 基于Gabor域时空泛化建模的矿井水灾感知方法. 工矿自动化. 2020(10): 76-79+86 . 本站查看

    Other cited types(7)

Catalog

    XU Jin

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (48) PDF downloads (11) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return