WANG Guofa, LI Shijun, ZHANG Yong, et al. Progress in high-efficiency and energy-saving technologies for large-scale intelligent equipment in coal mines[J]. Journal of Mine Automation,2025,51(4):1-8. DOI: 10.13272/j.issn.1671-251x.18242
Citation: WANG Guofa, LI Shijun, ZHANG Yong, et al. Progress in high-efficiency and energy-saving technologies for large-scale intelligent equipment in coal mines[J]. Journal of Mine Automation,2025,51(4):1-8. DOI: 10.13272/j.issn.1671-251x.18242

Progress in high-efficiency and energy-saving technologies for large-scale intelligent equipment in coal mines

More Information
  • Received Date: March 24, 2025
  • Revised Date: April 14, 2025
  • Available Online: May 06, 2025
  • High-efficiency and energy-saving technologies for large-scale intelligent equipment in coal mines are a key driving force for industrial transformation and upgrading. Focusing on high-efficiency and energy-saving technologies in systems such as fully mechanized mining, transportation, hoisting, and power supply, this paper analyzes the latest research progress and key technologies across four areas: 10 kV voltage upgrades at fully mechanized working faces, intelligent high-efficiency variable frequency drive integrated units, electrification and underground charging/swap systems for mobile coal mine equipment, and shaft hoists with shaftless magnetic coupling drives. ① 10 kV power supply system upgrades at fully mechanized working faces can reduce voltage and electric energy losses. This requires optimized power system design, enhanced electrical safety and high-voltage equipment protection, and the application of safety performance testing technologies to ensure reliable operation. ② The intelligent high-efficiency variable frequency drive integrated unit combines variable frequency control and permanent magnet direct drive motor technology with intelligent control and predictive maintenance, improving operational efficiency, reliability, and energy savings while reducing equipment failure rates and maintenance costs. ③ Electrification of underground equipment relies on high-performance lithium batteries, digital drive-by-wire systems, autonomous driving, and intelligent dispatching. This achieves zero emissions, low noise, and high efficiency. Supported by standardized explosion-proof lithium battery power, rapid battery swapping, vehicle-charger coordination with full-time management, and emergency response mechanisms at charging/swap stations, the technology helps alleviate range anxiety in underground operations. ④ The shaftless magnetic coupling drive hoist enhances mine transport efficiency and equipment stability through an integrated magnetic coupling drive system, a multi-channel anti-shock safety braking system, and health management technologies for key components—addressing the low efficiency and high failure rates of traditional hoists.

  • [1]
    王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.
    [2]
    王国法,孟令宇. 煤矿智能化及其技术装备发展[J]. 中国煤炭,2023,49(7):1-13.

    WANG Guofa,MENG Lingyu. Development of coal mine intelligence and its technical equipment[J]. China Coal,2023,49(7):1-13.
    [3]
    王国法,杜毅博,陈晓晶,等. 从煤矿机械化到自动化和智能化的发展与创新实践——纪念《工矿自动化》创刊50周年[J]. 工矿自动化,2023,49(6):1-18.

    WANG Guofa,DU Yibo,CHEN Xiaojing,et al. Development and innovative practice from coal mine mechanization to automation and intelligence:Commemorating the 50th anniversary of the founding of Journal of Mine Automation[J]. Journal of Mine Automation,2023,49(6):1-18.
    [4]
    梁斌峰. 综采工作面采煤智能化关键技术研究[J]. 矿业装备,2024(8):58-60. DOI: 10.3969/j.issn.2095-1418.2024.08.019

    LIANG Binfeng. Research on key technology of shearer intelligent of fully mechanized mining face[J]. Mining Equipment,2024(8):58-60. DOI: 10.3969/j.issn.2095-1418.2024.08.019
    [5]
    马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.

    MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.
    [6]
    崔邵云,鲍久圣,胡德平,等. SLAM技术及其在矿山无人驾驶领域的研究现状与发展趋势[J]. 工矿自动化,2024,50(10):38-52.

    CUI Shaoyun,BAO Jiusheng,HU Deping,et al. Research status and development trends of SLAM technology in autonomous mining field[J]. Journal of Mine Automation,2024,50(10):38-52.
    [7]
    冯亚军,郑金松,许路成. 基于移动机器人的矿山带式输送机自动检测方法[J]. 金属矿山,2024(3):209-214.

    FENG Yajun,ZHENG Jinsong,XU Lucheng. Automatic detection method of mine belt conveyor based on mobile robot[J]. Metal Mine,2024(3):209-214.
    [8]
    王国法,巩师鑫,申凯. 煤矿智能安控技术体系与高质量发展对策[J]. 矿业安全与环保,2023,50(5):1-8.

    WANG Guofa,GONG Shixin,SHEN Kai. Intelligent security control technology system and high-quality development countermeasures for coal mines[J]. Mining Safety & Environmental Protection,2023,50(5):1-8.
    [9]
    王国法,刘合,王丹丹,等. 新形势下我国能源高质量发展与能源安全[J]. 中国科学院院刊,2023,38(1):23-37.

    WANG Guofa,LIU He,WANG Dandan,et al. High-quality energy development and energy security under the new situation for China[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):23-37.
    [10]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [11]
    葛世荣,张晞,薛光辉,等. 我国煤矿煤机智能技术与装备发展研究[J]. 中国工程科学,2023,25(5):146-156. DOI: 10.15302/J-SSCAE-2023.05.013

    GE Shirong,ZHANG Xi,XUE Guanghui,et al. Development of intelligent technologies and machinery for coal mining in China's underground coal mines[J]. Strategic Study of CAE,2023,25(5):146-156. DOI: 10.15302/J-SSCAE-2023.05.013
    [12]
    康红普,雷亚军,赵福堂,等. 特厚煤层10 m超大采高综采关键技术及装备[J/OL]. 煤炭学报:1-25[2025-03-17]. https://doi.org/10.13225/j.cnki.jccs.2024.1617.

    KANG Hongpu,LEI Yajun,ZHAO Futang,et al. Key technology and equipment for fully mechanized mining with extra-large shearing height of 10 m in extra-thick coal seam[J/OL]. Journal of China Coal Society:1-25[2025-03-17]. https://doi.org/10.13225/j.cnki.jccs.2024.1617.
    [13]
    张利军. 综采工作面供电供液系统优化及自动化技术研究与应用[D]. 徐州:中国矿业大学,2019.

    ZHANG Lijun. Research and application of power supply and liquid supply system optimization and automation technology for fully mechanized mining face[D]. Xuzhou:China University of Mining and Technology,2019.
    [14]
    宋承林,张鸿波. 矿用大功率永磁同步直驱变频一体机的研究综述[J]. 陕西煤炭,2019,38(6):10-14. DOI: 10.3969/j.issn.1671-749X.2019.06.003

    SONG Chenglin,ZHANG Hongbo. Research on mine high power permanent magnet synchronous direct drive frequency conversion integrated machine[J]. Shaanxi Coal,2019,38(6):10-14. DOI: 10.3969/j.issn.1671-749X.2019.06.003
    [15]
    贺海涛. 10 kV永磁直驱一体机的设计及在神东矿区的应用[J]. 智能矿山,2024,5(1):60-69.

    HE Haitao. Design of 10 kV permanent magnet direct drive integrated machine and its application in Shendong mining area[J]. Journal of Intelligent Mine,2024,5(1):60-69.
    [16]
    黄岳峰. 刮板输送机用永磁半直驱变频一体机的综合设计技术研究[D]. 沈阳:沈阳工业大学,2024.

    HUANG Yuefeng. Comprehensive design technology research on scraper conveyor using permanent magnet semi-direct drive variable frequency integrated machine[D]. Shenyang:Shenyang University of Technology,2024.
    [17]
    黄鹤松,王芮,宋承林,等. 永磁同步电机调速系统二阶滑模控制器的设计[J]. 微电机,2021,54(2):55-60,66. DOI: 10.3969/j.issn.1001-6848.2021.02.010

    HUANG Hesong,WANG Rui,SONG Chenglin,et al. Design of second order sliding mode controller based on PMSM speed regulation system[J]. Micromotors,2021,54(2):55-60,66. DOI: 10.3969/j.issn.1001-6848.2021.02.010
    [18]
    宋秦中,胡华亮. 基于CNN算法的井下无人驾驶无轨胶轮车避障方法[J]. 金属矿山,2023(10):168-174.

    SONG Qinzhong,HU Hualiang. Obstacle avoidance method for underground unmanned trackless rubber-tyred vehicle based on CNN algorithm[J]. Metal Mine,2023(10):168-174.
    [19]
    田锦钊,吴玉杰,冉令才,等. 车路协同下的煤矿井下辅助运输系统设计与智能调度方法[J]. 能源与环保,2024,46(11):235-241.

    TIAN Jinzhao,WU Yujie,RAN Lingcai,et al. Design and intelligent scheduling method of coal mine underground auxiliary transportation system under vehicle-road coordination[J]. China Energy and Environmental Protection,2024,46(11):235-241.
    [20]
    SEE K W,王运鹏,张能,等. 矿用防爆锂离子电池电源安全设计影响因素研究[J]. 煤炭科学技术,2020,48(11):153-165.

    SEE K W,WANG Yunpeng,ZHANG Neng,et al. Study on influencing factors of mine explosion-proof lithium-ion batterypower supply safety design[J]. Coal Science and Technology,2020,48(11):153-165.
    [21]
    刘见中,王运鹏,谢斌,等. 矿用锂离子电池电源防爆保护技术及标准分析[J]. 煤炭科学技术,2020,48(9):203-208.

    LIU Jianzhong,WANG Yunpeng,XIE Bin,et al. Analysis on explosion-proof techniques and standards for lithium-ion battery power supply used in underground coal mine[J]. Coal Science and Technology,2020,48(9):203-208.
    [22]
    张利男,寇子明,吴娟,等. 永磁外转子提升机变频调速系统研究[J]. 煤炭工程,2021,53(5):136-141.

    ZHANG Li′nan,KOU Ziming,WU Juan,et al. Variable frequency speed control system of external rotor permanent magnet hoister[J]. Coal Engineering,2021,53(5):136-141.
    [23]
    阮锴燚,寇子明,王彦栋,等. 矿井提升系统数字孪生快速建模方法研究[J]. 煤炭科学技术,2023,51(9):219-230. DOI: 10.12438/cst.2022-1321

    RUAN Kaiyi,KOU Ziming,WANG Yandong,et al. Digital twin rapid construction method of a mining hoisting system[J]. Coal Science and Technology,2023,51(9):219-230. DOI: 10.12438/cst.2022-1321
    [24]
    李腾宇,寇子明,吴娟,等. 超千米深井提升机可视化监测系统应用[J]. 煤炭学报,2020,45(增刊2):1069-1078.

    LI Tengyu,KOU Ziming,WU Juan,et al. Monitoring system of the hoist in the over kilometer deep shaft[J]. Journal of China Coal Society,2020,45(S2):1069-1078.
  • Related Articles

    [1]ZHANG Lihui. Mask occlusion face recognition algorithm based on neural network model with optimized loss function[J]. Journal of Mine Automation, 2024, 50(S1): 15-20.
    [2]ZHANG Jinwang, HE Geng, HAN Xing, ZHANG Jiaming. Study on emissivity measurement of different types of coal and gangue using the matching method[J]. Journal of Mine Automation, 2024, 50(9): 13-19, 27. DOI: 10.13272/j.issn.1671-251x.2024070055
    [3]ZHU Daixian, QIU Qiang, KONG Haoran, HU Qisheng, LIU Shulin. A line feature matching algorithm for mine images based on line segment detection and LT descriptors[J]. Journal of Mine Automation, 2024, 50(2): 72-82. DOI: 10.13272/j.issn.1671-251x.2023090045
    [4]GUO Zhongtian, WANG Ranfeng, FU Xiang, WEI Kai, WANG Yulong. Method for extracting froth velocity of coal slime flotation based on image feature matching[J]. Journal of Mine Automation, 2022, 48(10): 34-39, 54. DOI: 10.13272/j.issn.1671-251x.17991
    [5]ZHAO Duan, SHEN Chengyang, SHI Xinguo, LIU Ke. Two-dimensional dynamic matching algorithm for mobile edge computing in intelligent mine[J]. Journal of Mine Automation, 2022, 48(4): 89-95. DOI: 10.13272/j.issn.1671-251x.17782
    [6]GONG Yun, YANG Pangbin, JIE Xinyu. Underground image matching algorithm combining homomorphic filtering and histogram equalizatio[J]. Journal of Mine Automation, 2021, 47(10): 37-41. DOI: 10.13272/j.issn.1671-251x.2021070018
    [7]BAI Jingcai, FAN Zheng, WANG Guozhu, DU Zhiyong. Research on load adaptive impedance matching of magnetic resonant wireless power transfer system[J]. Journal of Mine Automation, 2020, 46(3): 74-78. DOI: 10.13272/j.issn.1671-251x.2019050076
    [8]WANG Anyi, LI Li. Underground signal recognition method based on higher-order cumulants and DNN model[J]. Journal of Mine Automation, 2020, 46(2): 82-87. DOI: 10.13272/j.issn.1671-251x.2019100064
    [9]CHEN Gui-hua, YU De-ling, LU Wen-xue, JIANG Jia-ji. Application and Cumulative Configuration of Weighing Instrument in Dry Coaldust Conveying[J]. Journal of Mine Automation, 2009, 35(6): 29-31.
    [10]WANG Hong-yuan, SHI Lian-min, ZHOU Yue, CHENG Qi-cai, YANG Xiao-ying. Method of Digital Image Processing Based on DSP and S-function and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(3): 24-27.
  • Cited by

    Periodical cited type(13)

    1. 肖明国,张彪,林中湘,朱泽斌,周博,郑学召,黄渊. 矿山钻孔垂直救援技术的思考及发展趋势. 煤矿安全. 2024(04): 245-250 .
    2. 文虎,侯宗宣,郑学召,蔡国斌,严瑞锦. 深井救援技术与装备研究现状和发展趋势. 工矿自动化. 2024(05): 14-22+35 . 本站查看
    3. 郑学召,马扬,黄渊,蔡国斌,丁文. 面向矿山救援的UWB雷达生命信息识别研究现状与展望. 工矿自动化. 2024(07): 12-20 . 本站查看
    4. 文虎,周博,郑学召,康玉国,蔡国斌,黄渊,丁文. UWB雷达在矿山钻孔救援中的应用研究. 工矿自动化. 2023(06): 88-94 . 本站查看
    5. 郑学召,丁文,蔡国斌,黄渊,寇智哲,周博. 面向钻孔救援的UWB雷达回波信息处理关键问题研究进展. 煤矿安全. 2023(10): 219-225 .
    6. 文虎,唐瑞,刘名阳,王虎,张铎,郑学召,樊世星,程小蛟,金永飞. 矿山生命信息探测仪在事故救援中的应用. 煤矿安全. 2022(04): 162-166 .
    7. 郑学召,孙梓峪,郭军,张铎,陈刚,何芹健. 矿山钻孔救援多源信息探测技术研究与应用. 煤田地质与勘探. 2022(11): 94-102 .
    8. 顾海荣,单增海,王龙鹏,邵涛,邹祖杰,高子渝. 大直径钻孔救援提升装备研究进展. 煤田地质与勘探. 2022(11): 45-57 .
    9. 郑学召,孙梓峪,张嬿妮,张铎,徐承宇. 面向钻孔救援的超宽带雷达技术研究现状与方向. 工矿自动化. 2021(08): 20-26 . 本站查看
    10. 郑学召,孙梓峪,王宝元,郭军,徐承宇. 超宽带雷达波在煤体中的传输衰减特性. 西安科技大学学报. 2021(05): 765-771 .
    11. 郑学召,吴佩利,张铎,童鑫,李腾飞. 微晶结构与矿物元素对煤体电阻率的影响. 科学技术与工程. 2021(34): 14523-14527 .
    12. 段雅莎. 企业管理漏洞对矿井灾难人员疏散速度的影响建模分析. 灾害学. 2019(02): 43-47 .
    13. 文虎,刘洋,郑学召,郭军. 矿山救援机器人群设计. 工矿自动化. 2019(09): 34-39 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (113) PDF downloads (37) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return