ZHANG Jinwang, HE Geng, HAN Xing, et al. Study on emissivity measurement of different types of coal and gangue using the matching method[J]. Journal of Mine Automation,2024,50(9):13-19, 27. DOI: 10.13272/j.issn.1671-251x.2024070055
Citation: ZHANG Jinwang, HE Geng, HAN Xing, et al. Study on emissivity measurement of different types of coal and gangue using the matching method[J]. Journal of Mine Automation,2024,50(9):13-19, 27. DOI: 10.13272/j.issn.1671-251x.2024070055

Study on emissivity measurement of different types of coal and gangue using the matching method

More Information
  • Received Date: July 15, 2024
  • Revised Date: September 24, 2024
  • Available Online: August 29, 2024
  • The type, surface texture, metamorphic degree, and developmental stage of coal and gangue significantly influence their emissivity. Accurate settings for emissivity parameters are essential for infrared temperature measurements and the identification of coal and gangue in infrared images. This study proposed a method for measuring the emissivity of coal and gangue based on the matching method. The approach integrated surface thermocouples with infrared thermography to assess emissivity. Samples were uniformly heated in a closed electric furnace, and once the temperature stabilized, a surface thermocouple measured the actual temperature of a selected area (denoted as t1). Concurrently, the infrared thermography system measured the temperature of the same area (denoted as t2). The emissivity of the infrared thermography system was calibrated until t2 equaled t1. At this point, the calculated emissivity reflected the true emissivity of the coal and gangue at that temperature. The experimental results indicated that: ① Under isothermal conditions, greater surface roughness of coal and gangue correlated with higher emissivity values, suggesting that surface roughness is a fundamental factor restricting the emissivity of these materials. ② The emissivity of four different types of coal and gangue decreased with increasing temperature, following a power function, with the fitting function's correlation coefficient (R2) exceeding 0.98, thereby confirming the feasibility of the matching method for measuring emissivity. ③ The inverse method revealed that the error rates between the measured and theoretical values under varying temperature conditions were all below 3%, validating the accuracy of the measured emissivity of coal and gangue.
  • [1]
    国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[J]. 中国统计,2024(3):4-21.

    National Brueau of Statistics. Statistical communiqué on national economic and social development of people's republic of China (PRC) in 2023[J]. China Statistics,2024(3):4-21.
    [2]
    王家臣,刘云熹,李杨,等. 矿业系统工程60年发展与展望[J]. 煤炭学报,2024,49(1):261-279.

    WANG Jiachen,LIU Yunxi,LI Yang,et al. 60 years development and prospect of mining systems engineering[J]. Journal of China Coal Society,2024,49(1):261-279.
    [3]
    金智新,闫志蕊,王宏伟,等. 新一代信息技术赋能煤矿装备数智化转型升级[J]. 工矿自动化,2023,49(6):19-31.

    JIN Zhixin,YAN Zhirui,WANG Hongwei,et al. The new generation of information technology empowers the digital and intelligent transformation and upgrading of coal mining equipment[J]. Journal of Mine Automation,2023,49(6):19-31.
    [4]
    孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Industry and Mine Automation,2022,48(3):1-4,90.
    [5]
    王家臣,魏炜杰,张国英,等. 放煤规律与智能放煤[M]. 北京:科学出版社,2022.

    WANG Jiachen,WEI Weijie,ZHANG Guoying,et al. Top coal drawing mechanism and intelligent drawing[M]. Beijing:Science Press,2022.
    [6]
    张锦旺,王家臣,何庚. 煤矸红外图像识别基础研究[M]. 北京:应急管理出版社,2024.

    ZHANG Jinwang,WANG Jiachen,HE Geng. Basic research on infrared image recognition of coal gangue[M]. Beijing:Emergency Management Press,2024.
    [7]
    张锦旺,王家臣,何庚,等. 液体介入提升煤矸识别效率的试验研究[J]. 煤炭学报,2021,46(增刊2):681-691.

    ZHANG Jinwang,WANG Jiachen,HE Geng,et al. Experimental study on improving the identification efficiency of coal gangue by liquid intervention[J]. Journal of China Coal Society,2021,46(S2):681-691.
    [8]
    ZHANG Jinwang,HE Geng,YANG Shengli. Controlling water temperature for efficient coal/gangue recognition[J]. Materials Today Chemistry,2021,22. DOI: 10.1016/j.mtchem.2021.100587.
    [9]
    张锦旺,何庚,王家臣. 不同混合度下液体介入难辨别煤矸红外图像识别准确率[J]. 煤炭学报,2022,47(3):1370-1381.

    ZHANG Jinwang,HE Geng,WANG Jiachen. Coal/gangue recognition accuracy based on infrared image with liquid intervention under different mixing degree[J]. Journal of China Coal Society,2022,47(3):1370-1381.
    [10]
    ZHANG Jinwang,ZHAO Jialin,HE Geng,et al. Effect of secondary intervention on recognition accuracy of coal and gangue with small gray difference[J]. Materials Today Chemistry,2022,26. DOI: 10.1016/j.mtchem.2022.101244.
    [11]
    ZHANG Jinwang,HAN Xing,CHENG Dongliang. Improving coal/gangue recognition efficiency based on liquid intervention with infrared imager at low emissivity[J]. Measurement,2022,189. DOI: 10.1016/J.MEASUREMENT.2021.110445.
    [12]
    冯佳琪,陆道纲,张钰浩,等. 热辐射特征参数对快堆锥形顶盖空间换热特性影响的研究[J]. 核科学与工程,2024,44(1):55-62.

    FENG Jiaqi,LU Daogang,ZHANG Yuhao,et al. Study on the influence of thermal radiation characteristic parameters on roof slab space heat transfer behaviors in fast reactor[J]. Nuclear Science and Engineering,2024,44(1):55-62.
    [13]
    王潇楠,李文军,李佳琪,等. 深度连续渐变式空腔阵列表面发射率研究[J]. 激光与红外,2018,48(11):1386-1390.

    WANG Xiaonan,LI Wenjun,LI Jiaqi,et al. Research on surface emissivity of depth continuous gradient cavity array[J]. Laser & Infrared,2018,48(11):1386-1390.
    [14]
    邹锐婷,吴会军,刘彦辰,等. 地板表面发射率对地暖性能的影响[J]. 建筑热能通风空调,2021,40(9):14-18.

    ZOU Ruiting,WU Huijun,LIU Yanchen,et al. The influence of floor surface emissivity on performance of floor heating[J]. Building Energy & Environment,2021,40(9):14-18.
    [15]
    刘占一,许婷,张魏静,等. 热防护材料表面发射率测试研究[J]. 火箭推进,2019,45(4):79-84,90.

    LIU Zhanyi,XU Ting,ZHANG Weijing,et al. Measurement study on surface emissivity of thermal protection material[J]. Journal of Rocket Propulsion,2019,45(4):79-84,90.
    [16]
    ERMIDA S L,HULLEY G,TRIGO I F. Introducing emissivity directionality to the temperature-emissivity separation algorithm[J]. Remote Sensing of Environment,2024,311. DOI: 10.1016/J.RSE.2024.114280.
    [17]
    CAGLE C,PANTOYA M. Fireball symmetry and its influence on perspective error from thermography data[J]. Measurement,2024,235 . DOI: 10.1016/j.measurement.2024.115020.
    [18]
    时吉磊,陈廷彬,付少海,等. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报,2024,45(6):32-38.

    SHI Jilei,CHEN Tingbin,FU Shaohai,et al. Preparation and properties of low infrared emissivity temperature-controlled thermal infrared camouflage materials[J]. Journal of Textile Research,2024,45(6):32-38.
    [19]
    吴宇颂,田博宇,李辉,等. 半球向全发射率测量实验教学系统设计与开发[J]. 实验技术与管理,2024,41(1):165-170.

    WU Yusong,TIAN Boyu,LI Hui,et al. Design and development of an experimental teaching system for measuring hemispherical total emissivity[J]. Experimental Technology and Management,2024,41(1):165-170.
    [20]
    沈久利,张玉存. 不同发射率下红外热图像的非稳态温度场测量研究[J]. 计量学报,2019,40(5):810-815.

    SHEN Jiuli,ZHANG Yucun. Study on non-steady temperature field measurement of infrared thermal image under different emissivity[J]. Acta Metrologica Sinica,2019,40(5):810-815.
    [21]
    王俊虎,武鼎,郭帮杰,等. 一种新的适用于不同温度状态下岩石温度与发射率分离的平滑度函数[J]. 世界核地质科学,2023,40(4):1002-1008.

    WANG Junhu,WU Ding,GUO Bangjie,et al. A new smoothness function for temperature and emissivity separation of rocks at different temperature states[J]. World Nuclear Geoscience,2023,40(4):1002-1008.
    [22]
    周维卫,传秀云,王时麒. 营口蛇纹石玉红外发射功能及其影响因素[J]. 矿物学报,2011,31(4):750-756.

    ZHOU Weiwei,CHUAN Xiuyun,WANG Shiqi. Infared emission function and its influencing factors of Yingkou Serpentine Jade[J]. Acta Mineralogica Sinica,2011,31(4):750-756.
    [23]
    李文军,徐永达,郑永军. 红外热像仪与表面热电偶测量发射率的匹配法[J]. 中国测试,2017,43(6):12-15.

    LI Wenjun,XU Yongda,ZHENG Yongjun. Match method of emissivity measurement based on infrared thermal imager and surface thermometer[J]. China Measurement & Test,2017,43(6):12-15.
  • Related Articles

    [1]ZHAO Xiaohu, CHE Tingyu, YE Sheng, TIAN He, ZHANG KAI. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation, 2022, 48(9): 92-99. DOI: 10.13272/j.issn.1671-251x.2022030086
    [2]HUANG Weiwei. Research on two-dimensional inversion method of transient electromagnetic in whole-space based on particle swarm[J]. Journal of Mine Automation, 2021, 47(4): 79-84. DOI: 10.13272/j.issn.1671-251x.2021010032
    [3]WU Genshui, YU Weijian, LIU Ze, LIU Fangfang, HUANG Zhong. Inversion method of mechanical parameters of rock mass insoft rock roadway and its engineering applicatio[J]. Journal of Mine Automation, 2018, 44(11): 41-48. DOI: 10.13272/j.issn.1671—251x.2018040081
    [4]DUAN Yuxiu, DU Wenhua, ZENG Zhiqiang, WANG Rijun, DUAN Nengquan, LI Xiaona. Electric bucket teeth missing detection method based on machine visio[J]. Journal of Mine Automation, 2018, 44(7): 75-80. DOI: 10.13272/j.issn.1671-251x.2018030006
    [5]WANG Yongxing, HUA Gang, ZHANG Xin. Rapid generation method of RSS fingerprint data in underground roadway[J]. Journal of Mine Automation, 2016, 42(3): 36-39. DOI: 10.13272/j.issn.1671-251x.2016.03.008
    [6]JIA Xinguo. Calculation parameters inversion of mining subsidence based on ant colony algorithm[J]. Journal of Mine Automation, 2015, 41(6): 10-13. DOI: 10.13272/j.issn.1671-251x.2015.06.003
    [7]NIU Chao, ZHU Zhen-wei, CAO Ling-zhi. Induction Motor Speed Control Based on Inverse System Theory and Sliding Mode Method[J]. Journal of Mine Automation, 2012, 38(9): 67-70.
    [8]LI XING-chun, WANG Hong, LI Xing-gao. Application of Infrared Technology in Detection and Prediction of Karst in Tunnel Excavating[J]. Journal of Mine Automation, 2008, 34(2): 70-71.
    [9]FU Zi-yi, ZHAO Wen-tao, WANG Xin-hua. The Control of Model Reference and Inverse Method for Permanent Magnet Linear Synchronous Motor[J]. Journal of Mine Automation, 2005, 31(6): 17-19.
    [10]HU Shou-xin, YOU Guo-dong, SONG Jian-cheng. Study on Communication Method for Mine-used Feeder Switch Based on RS485[J]. Journal of Mine Automation, 2005, 31(5): 4-5.
  • Cited by

    Periodical cited type(7)

    1. 王江宏,刘硕,尹少波,常成林. 贝叶斯优化机器学习模型在孔间电阻率法电压预测中的应用研究. 能源与环保. 2025(03): 115-122 .
    2. 胡俭,王航,王帅豪,操康波,毛小娃. 采空区多孔介质中气化灰渣凝胶渗流特性研究. 西安科技大学学报. 2025(02): 263-274 .
    3. 张盛行,汤雷,朱春光,石蓝星,明攀. 基于瞬变电磁法的均质土坝渗漏通道探测与消险质量评价. 水利与建筑工程学报. 2025(02): 98-105 .
    4. 杨玉冰. 电阻率CT探测在煤矿工作面顶板“四含”注浆改造评价中的应用. 工程建设与设计. 2024(11): 42-44 .
    5. 孙庆华,娄杰,胡鑫,谷超,孙强,张卫强. 基于电阻率响应的裂隙岩体粉煤灰注浆效果研究. 中国煤炭. 2024(10): 33-39 .
    6. 于远祥,沈鹏,张永亮,王有发. 动静组合荷载下隧道锚固围岩累积损伤效应与支护优化. 西安科技大学学报. 2024(06): 1095-1106 .
    7. 汪学明. 基于四电极测量原理的矿用高精度电导率传感器设计. 能源与环保. 2024(12): 211-216 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (473) PDF downloads (21) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return