FU Xiang, WANG Kai, WANG Ranfeng. Connotation and application paradigm of intelligent mining data intelligence enabling technology[J]. Journal of Mine Automation,2025,51(3):1-8. DOI: 10.13272/j.issn.1671-251x.18239
Citation: FU Xiang, WANG Kai, WANG Ranfeng. Connotation and application paradigm of intelligent mining data intelligence enabling technology[J]. Journal of Mine Automation,2025,51(3):1-8. DOI: 10.13272/j.issn.1671-251x.18239

Connotation and application paradigm of intelligent mining data intelligence enabling technology

More Information
  • Received Date: March 05, 2025
  • Revised Date: March 19, 2025
  • Available Online: March 31, 2025
  • Data and intelligence are the core engines driving the precision, efficiency, and safety of sustainable intelligent mining development. A system for intelligent mining data intelligence enabling technology based on the "data-algorithm-equipment-ecology" four-dimensional collaborative architecture was proposed, and an intelligent closed-loop framework covering data governance, intelligent decision-making, equipment execution, and human-machine collaboration for the entire mining chain was constructed. The data layer established a comprehensive mine data asset platform through standardized storage architecture and multi-modal data fusion, supporting real-time data flow services and historical data mining. The algorithm layer combined industrial mechanism models and swarm intelligence algorithms to construct a dynamic decision-making system based on multi-objective optimization, achieving collaborative optimization of mining processes and safety-weighted priority control. The equipment layer relied on intelligent new coal machine equipment groups, developing equipment adaptive control and multi-machine collaborative linkage mechanisms. The ecology layer built a "human-machine-intelligence-environment" symbiosis system through digital twins, human-in-the-loop optimization, and expert rule embedding, driving the system's dynamic iteration. Based on the above framework, a bidirectional coordination mechanism of "data flow-intelligence flow" and a layered decoupling logic were proposed, achieving dynamic responses with millisecond-level equipment control, second-level algorithmic decision-making, and minute-level human intervention, establishing a new mining production relationship with bidirectional enabling between AI and humans. Using fully mechanized mining process as a typical scenario, a closed-loop enabling path based on "demand-driven - data-driven - intelligent decision-making - equipment execution" was constructed, establishing an application paradigm of intelligent mining data intelligence enabling for fully mechanized mining technology. A cyclical process of "automated process execution → AI strategy generation → human verification → human-machine collaborative control" was established, supporting dynamic switching between multiple modes, including manual, division of labor, approval, and rejection. The deep collaboration between coal mining automation and AI-assisted decision-making facilitated the transition of the mining industry from the "machine replacing humans" paradigm to the "human intelligence enhancing machines" paradigm.

  • [1]
    国家能源局. 国家能源局关于进一步加快煤矿智能化建设促进煤炭高质量发展的通知[EB/OL]. [2025-03-01]. https://www.gov.cn/zhengce/zhengceku/202405/content_6954239.htm.

    National Energy Administration. Notice of the National Energy Administration on further accelerating the intelligent construction of coal mines to promote the high-quality development of coal[EB/OL]. [2025-03-01]. https://www.gov.cn/zhengce/zhengceku/202405/content_6954239.htm.
    [2]
    王国法,富佳兴,王忠鑫. 煤矿智能化重要进展与高质量发展方向[J]. 智能矿山,2025,6(1):2-12.

    WANG Guofa,FU Jiaxing,WANG Zhongxin. Important progress and high-quality development direction of coal mine intelligence[J]. Journal of Intelligent Mine,2025,6(1):2-12.
    [3]
    刘峰,郭林峰,张建明,等. 煤炭工业数字智能绿色三化协同模式与新质生产力建设路径[J]. 煤炭学报,2024,49(1):1-15.

    LIU Feng,GUO Linfeng,ZHANG Jianming,et al. Synergistic mode of digitalization-intelligentization-greeniation of the coal industry and it's path of building new coal productivity[J]. Journal of China Coal Society,2024,49(1):1-15.
    [4]
    王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
    [5]
    王国法,杜毅博,庞义辉. 6S智能化煤矿的技术特征和要求[J]. 智能矿山,2022,3(1):2-13.

    WANG Guofa,DU Yibo,PANG Yihui. Technical characteristics and requirements of 6S intelligent coal mine[J]. Journal of Smart Mine,2022,3(1):2-13.
    [6]
    王国法,张金虎,任怀伟,等. 煤炭高效开采数智技术与成套装备研究及应用[J]. 煤炭学报,2025,50(1):43-64.

    WANG Guofa,ZHANG Jinhu,REN Huaiwei,et al. Research and application practice of digital intelligent technology and complete set of equipment for efficient coalmining[J]. Journal of China Coal Society,2025,50(1):43-64.
    [7]
    王双明,孙强,谷超,等. 煤炭开发推动地学研究发展[J]. 中国煤炭,2024,50(1):2-8.

    WANG Shuangming,SUN Qiang,GU Chao,et al. The development of geoscientific research promoted by coal exploitation[J]. China Coal,2024,50(1):2-8.
    [8]
    袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1-14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1-14.
    [9]
    程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1-12.

    CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1-12.
    [10]
    范京道,封华,宋朝阳,等. 可可盖煤矿全矿井机械破岩智能化建井关键技术与装备[J]. 煤炭学报,2022,47(1):499-514.

    FAN Jingdao,FENG Hua,SONG Zhaoyang,et al. Key technology and equipment of intelligent mine construction of whole mine mechanical rock breaking in Kekegai Coal Mine[J]. Journal of China Coal Society,2022,47(1):499-514.
    [11]
    范京道,金智新,王国法,等. 煤矿智能化重构人与煤空间关系研究[J]. 中国工程科学,2023,25(2):243-253.

    FAN Jingdao,JIN Zhixin,WANG Guofa,et al. Reconstructing human-coal space relationship through coalmine intellectualization[J]. Strategic Study of CAE,2023,25(2):243-253.
    [12]
    国务院. “十四五”数字经济发展规划[EB/OL]. [2025-03-01]. https://www.gov.cn/gongbao/content/2022/content_5671108.htm.

    The State Council. The 14th Five-Year Plan for digital economy development[EB/OL]. [2025-03-01]. https://www.gov.cn/gongbao/content/2022/content_5671108.htm.
    [13]
    陈旭升,张旭东,刘洪予. 数智服务赋能工业企业创新路径研究[J]. 中国科技论坛,2024(12):137-145.

    CHEN Xusheng,ZHANG Xudong,LIU Hongyu. Research on the innovation paths of industrial enterprises empowered by digital intelligence services[J]. Forum on Science and Technology in China,2024(12):137-145.
    [14]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
    [15]
    付翔,秦一凡,李浩杰,等. 新一代智能煤矿人工智能赋能技术研究综述[J]. 工矿自动化,2023,49(9):122-131,139.

    FU Xiang,QIN Yifan,LI Haojie,et al. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation,2023,49(9):122-131,139.
    [16]
    谢嘉成,房舒凯,王学文,等. “人本智造与XR+”驱动的综采工作面人机协同智能化运行模式探索与实践[J]. 煤炭学报,2023,48(2):1099-1114.

    XIE Jiacheng,FANG Shukai,WANG Xuewen,et al. Exploration and practice of the human-machine collaborative intelligent operation mode of fully mechanized coal mining face driven by humanistic intelligent manufacturing and XR+technology[J]. Journal of China Coal Society,2023,48(2):1099-1114.
    [17]
    王国法,张建中,刘再斌,等. 煤炭绿色开发复杂巨系统数智化技术进展[J]. 煤炭科学技术,2024,52(11):1-16. DOI: 10.12438/cst.2024-1190

    WANG Guofa,ZHANG Jianzhong,LIU Zaibin,et al. Progress in digital and intelligent technologies for complex giant systems in green coal development[J]. Coal Science and Technology,2024,52(11):1-16. DOI: 10.12438/cst.2024-1190
    [18]
    付翔,李浩杰,张锦涛,等. 综采液压支架中部跟机多模态人机协同控制系统[J]. 煤炭学报,2024,49(3):1717-1730.

    FU Xiang,LI Haojie,ZHANG Jintao,et al. Multimodal human-machine collaborative control system for hydraulic supports following the shearer in the middle range of fully mechanized mining face[J]. Journal of China Coal Society,2024,49(3):1717-1730.
    [19]
    张锦涛,付翔,王然风,等. 智采工作面中部液压支架集群自动化后人工调控决策模型[J]. 工矿自动化,2022,48(10):20-25.

    ZHANG Jintao,FU Xiang,WANG Ranfeng,et al. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation,2022,48(10):20-25.
    [20]
    孙岩,付翔,王然风,等. 融合传感器数据和人工调控信息的工作面直线度智能预测[J]. 工矿自动化,2024,50(11):84-91.

    SUN Yan,FU Xiang,WANG Ranfeng,et al. Intelligent prediction for face straightness based on sensor data and human operation information[J]. Journal of Mine Automation,2024,50(11):84-91.
    [21]
    贾一帆,付翔,王然风,等. 基于数据驱动的液压支架初撑后承压效果即时预测技术[J]. 工矿自动化,2024,50(7):32-39.

    JIA Yifan,FU Xiang,WANG Ranfeng,et al. Real time prediction technology for load bearing effect of hydraulic support after initial support based on data-driven approach[J]. Journal of Mine Automation,2024,50(7):32-39.
    [22]
    贾思锋,付翔,王然风,等. 液压支架时空区域支护质量动态评价[J]. 工矿自动化,2022,48(10):26-33,81.

    JIA Sifeng,FU Xiang,WANG Ranfeng,et al. Dynamic evaluation of support quality of hydraulic support in space-time region[J]. Journal of Mine Automation,2022,48(10):26-33,81.
    [23]
    张智星,付翔,张小强,等. 煤矿工业数据AI模型自动推理技术[J]. 工矿自动化,2024,50(9):138-143.

    ZHANG Zhixing,FU Xiang,ZHANG Xiaoqiang,et al. Automatic reasoning technology for coal mine industrial data AI models[J]. Journal of Mine Automation,2024,50(9):138-143.
  • Related Articles

    [1]HAN Gang, XIE Jiahao, QIN Xiwen, WANG Xing, HAO Xiaoqi. Intelligent assessment method for rockburst hazard areas based on image recognition technology[J]. Journal of Mine Automation, 2023, 49(12): 77-86, 93. DOI: 10.13272/j.issn.1671-251x.2023010047
    [2]YU Haixu, DU Zhiyong, WEI Zhidan, BAO Weiwei, TENG Chunyang, XUE Guoqing, HAI Sufeng. Analysis on the current situation and development trend of unmanned driving technology in mining areas in China[J]. Journal of Mine Automation, 2022, 48(S2): 82-87.
    [3]CAO Yuchao. Mine flood perception based on gray level co-occurrence matrix and regression analysis[J]. Journal of Mine Automation, 2020, 46(9): 94-97. DOI: 10.13272/j.issn.1671-251x.17678
    [4]SUN Jiping, JIN Chunhai. Research on methods of mine flood perception and water source determination[J]. Journal of Mine Automation, 2019, 45(4): 1-5. DOI: 10.13272/j.issn.1671-251x.17416
    [5]SUN Jiping, SUN Yanyu. Research on methods of mine fire monitoring and trend predictio[J]. Journal of Mine Automation, 2019, 45(3): 1-4. DOI: 10.13272/j.issn.1671-251x.17407
    [6]ZHU Yongping, XU Xiaojian. Development trend of mine frequency converter[J]. Journal of Mine Automation, 2017, 43(10): 18-23. DOI: 10.13272/j.issn.1671-251x.2017.10.004
    [7]WANG Jiangrong, LUO Ziqin, ZHAO Rui. Application of projection pursuit in gas emission predictio[J]. Journal of Mine Automation, 2015, 41(4): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.04.022
    [8]WU Zhaofa, WU Xiang, QIAN Jiansheng. Trend prediction of gas concentration based on interpolation trapezoidal fuzzy information granulatio[J]. Journal of Mine Automation, 2014, 40(12): 31-36. DOI: 10.13272/j.issn.1671-251x.2014.12.009
    [9]REN Zhi-ling~, YU Qun~, YU Chao~. Application of CLGA in Impulsion Pressure Predictio[J]. Journal of Mine Automation, 2010, 36(3): 41-45.
    [10]REN Zhi-ling~, YU Qun~, YU Chao~, HAN Wei-qin~. Application of CLGA in Impulsion Pressure Predictio[J]. Journal of Mine Automation, 2010, 36(3): 39-41.
  • Cited by

    Periodical cited type(16)

    1. 承达瑜, 刘国全, 刘鹏, 孟磊, 武择鹏, 母明哲. 一种双向矿井突水蔓延算法及应用. 煤炭与化工. 2025(08)
    2. 孙继平, 龚大立. 煤矿瓦斯抽采和探水作业智能管理系统标准研究制定. 工矿自动化. 2025(06) 本站查看
    3. 连会青,康佳,尹尚先,徐斌,闫国成,夏向学,徐保同. 煤矿井下顶板突水征兆视频智能识别方法研究. 煤矿安全. 2025(04): 166-173 .
    4. 刘艳冬,刘滢,卢兰萍,白峰青,王铁记,卫皓皓. 基于ZOA-CNN-GRU模型的煤层底板突水等级预测. 中国煤炭. 2024(06): 44-51 .
    5. 原超. 煤矿井下可视化智能监控系统. 机械制造. 2024(11): 98-100+59 .
    6. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
    7. 张立亚. 基于5G通信的矿山可视化智能监控技术. 煤炭技术. 2022(01): 191-194 .
    8. 孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
    9. 刘春霞,高强,潘理虎,龚大立. 融合交叉熵损失的3DCNN探水作业动作识别. 计算机工程与设计. 2022(04): 1160-1165 .
    10. 张立亚. 基于图像识别的煤矿井下安全管控技术. 煤矿安全. 2021(02): 165-168 .
    11. 孙继平,余星辰. 基于声音识别的煤矿重特大事故报警方法研究. 工矿自动化. 2021(02): 1-5+44 . 本站查看
    12. 周国慧,储婷婷. 采煤机视频监控系统设计. 电子元器件与信息技术. 2021(04): 27-28 .
    13. 党伟超,张泽杰,白尚旺,龚大力,吴喆峰. 基于改进双流法的井下配电室巡检行为识别. 工矿自动化. 2020(04): 75-80 . 本站查看
    14. 曹玉超. 基于灰度共生矩阵与回归分析的矿井水灾感知. 工矿自动化. 2020(09): 94-97 . 本站查看
    15. 黄骁骏. 基于图像处理的滑块验证码模拟验证研究. 电子技术. 2020(05): 16-19 .
    16. 曹玉超. 基于Gabor域时空泛化建模的矿井水灾感知方法. 工矿自动化. 2020(10): 76-79+86 . 本站查看

    Other cited types(7)

Catalog

    WANG Ranfeng

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (172) PDF downloads (61) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return