PENG Ming. Applicability study of the general wireless transmission path loss statistical model in mines[J]. Journal of Mine Automation,2025,51(4):57-63, 85. DOI: 10.13272/j.issn.1671-251x.18236
Citation: PENG Ming. Applicability study of the general wireless transmission path loss statistical model in mines[J]. Journal of Mine Automation,2025,51(4):57-63, 85. DOI: 10.13272/j.issn.1671-251x.18236

Applicability study of the general wireless transmission path loss statistical model in mines

More Information
  • Received Date: February 24, 2025
  • Revised Date: April 01, 2025
  • Available Online: May 06, 2025
  • Wireless network planning and optimization for systems such as mine mobile communication, personnel and vehicle positioning, wireless video transmission, and wireless sensing require link budget calculations to determine the maximum allowable wireless transmission path loss. The wireless transmission path loss statistical model is an effective method for predicting wireless transmission path loss. The applicability of the general wireless transmission path loss statistical model in mine environments was analyzed: ① The single-frequency general wireless transmission path loss statistical model does not include frequency as a variable and is only suitable for predicting wireless transmission path loss at different distances for a single frequency. However, the systems used in mines operate across multiple frequency bands, and the model does not account for the impact of the unique environmental factors in mines. Therefore, the single-frequency model is not suitable for mine applications. ② The multi-frequency general wireless transmission path loss statistical model includes frequency as a variable and is suitable for predicting path loss at different distances across multiple frequencies (within corresponding frequency bands). However, it only considers the effects of frequency and distance on wireless transmission and does not account for the special environmental factors present in mines. When the multi-frequency model is used to predict wireless transmission path loss in mine auxiliary transport roadways and excavation tunnels, the mean prediction error is relatively large—around 8-9 dB—indicating that the model is not suitable for mine environments. Currently, there is no wireless transmission path loss statistical model specifically developed for the unique environment of mines. Therefore, it is necessary to develop a mine-specific statistical model for wireless transmission path loss, tailored to the confined space and special environmental conditions of mines, to guide the planning and optimization of wireless networks for mine mobile communication, personnel and vehicle positioning, wireless video, and wireless sensing systems.

  • [1]
    孙继平. 煤矿用5G通信系统标准研究制定[J]. 工矿自动化,2023,49(8):1-8.

    SUN Jiping. Research and development of 5G communication system standards for coal mines[J]. Journal of Mine Automation,2023,49(8):1-8.
    [2]
    孙继平,彭铭. 煤矿信息综合承载网标准研究制定[J]. 工矿自动化,2024,50(4):1-8.

    SUN Jiping,PENG Ming. Research and formulation of coal mine information comprehensive bearer network standards[J]. Journal of Mine Automation,2024,50(4):1-8.
    [3]
    孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8.

    SUN Jiping,LIANG Weifeng,PENG Ming,et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8.
    [4]
    GB/T 3836.1—2021 爆炸性环境 第1部分:设备 通用要求[S].

    GB/T 3836.1-2021 Explosive atmospheres-Part 1:Equipment-General requirements[S].
    [5]
    孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.
    [6]
    梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.
    [7]
    潘涛,彭铭,徐会军,等. 煤矿井下无线电波防爆安全阈值及测试方法[J]. 智能矿山,2023,4(1):78-82.

    PAN Tao,PENG Ming,XU Huijun,et al. Safety thresholds and test methods for radio wave explosion protection in underground coal mines[J]. Journal of Intelligent Mine,2023,4(1):78-82.
    [8]
    丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144.

    DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144.
    [9]
    NB/T 11547—2024 煤矿用5G通信基站控制器[S].

    NB/T 11547-2024 5G communication baseband controller for coal mines[S].
    [10]
    NB/T 11546—2024 煤矿用5G通信系统通用技术条件[S].

    NB/T 11546-2024 General specification of 5G communication system for coal mines[S].
    [11]
    NB/T 11523—2024 煤矿用5G通信基站[S].

    NB/T 11523-2024 5G communication base station for coal mines[S].
    [12]
    孙继平,彭铭. 无线电波发射功率防爆要求与检测方法[J]. 工矿自动化,2024,50(6):1-5,22.

    SUN Jiping,PENG Ming. Explosion proof requirements and detecting methods for radio wave transmission power[J]. Journal of Mine Automation,2024,50(6):1-5,22.
    [13]
    孙继平,彭铭. 矿井无线电波防爆安全发射功率研究[J]. 工矿自动化,2024,50(3):1-5.

    SUN Jiping,PENG Ming. Research on the safe transmission power of mine radio wave explosion prevention[J]. Journal of Mine Automation,2024,50(3):1-5.
    [14]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [15]
    孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
    [16]
    孙继平. 矿井人员位置监测技术[J]. 工矿自动化,2023,49(6):41-47.

    SUN Jiping. Mine personnel position monitoring technology[J]. Journal of Mine Automation,2023,49(6):41-47.
    [17]
    邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128.

    SHAO Shuicai,GUO Xudong,PENG Ming,et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128.
    [18]
    孙继平,彭铭. 室内电磁波传播衰减统计模型用于矿井的适用性研究[J]. 工矿自动化,2025,51(2):1-8.

    SUN Jiping,PENG Ming. Study on applicability of indoor electromagnetic wave propagation attenuation statistical models in mines[J]. Journal of Mine Automation,2025,51(2):1-8.
    [19]
    ZHOU Wenqi,WANG Chengxiang,HUANG Chen,et al. Channel scenario extensions,identifications,and adaptive modeling for 6G wireless communications[J]. IEEE Internet of Things Journal,2024,11(5):7285-7308. DOI: 10.1109/JIOT.2023.3315296
    [20]
    WANG Yang,WANG Chenxu,ZHENG Xiangquan,et al. Multifrequency wireless channel measurements and characterization in indoor industrial scenario[J]. IEEE Internet of Things Journal,2024,11(23):38455-38468. DOI: 10.1109/JIOT.2024.3447082
    [21]
    张建华,王玉洁,唐盼,等. 工业互联网信道特性与建模研究综述[J]. 电波科学学报,2023,38(1):3-14. DOI: 10.12265/j.cjors.2022158

    ZHANG Jianhua,WANG Yujie,TANG Pan,et al. Overview of research on channel characteristics and modeling in the IIoT scenarios[J]. Chinese Journal of Radio Science,2023,38(1):3-14. DOI: 10.12265/j.cjors.2022158
    [22]
    ZHANG Hanzhong,ZHOU Ting,XU Tianheng,et al. Field measurement and channel modeling around Wailingding island for maritime wireless communication[J]. IEEE Antennas and Wireless Propagation Letters,2024,23(6):1934-1938. DOI: 10.1109/LAWP.2024.3374788
    [23]
    ELMEZUGHI M K,AFULLO T J. An efficient approach of improving path loss models for future mobile networks in enclosed indoor environments[J]. IEEE Access,2021,9:110332-110345. DOI: 10.1109/ACCESS.2021.3102991
    [24]
    ERUNKULU O O,ZUNGERU A M,THULA I G,et al. A comparative analysis of alpha-beta-gamma and close-in path loss models based on measured data for 5G mobile networks[J]. Results in Engineering,2024,22. DOI: 10.1016/j.rineng.2024.102328.
    [25]
    孙继平,彭铭,刘斌. 矿井无线传输测试分析与矿用5G优选工作频段研究[J]. 工矿自动化,2024,50(10):1-11,20.

    SUN Jiping,PENG Ming,LIU Bin. Analysis of wireless transmission tests in mines and preferred working frequency bands for mining 5G[J]. Journal of Mine Automation,2024,50(10):1-11,20.
  • Related Articles

    [1]SHANG Weidong, WANG Haili, ZHANG Xiaoxia, WANG Hao, XU Hualong. A coal mine data acquisition, fusion and sharing system based on object model[J]. Journal of Mine Automation, 2024, 50(1): 17-24, 34. DOI: 10.13272/j.issn.1671-251x.2023070047
    [2]TAN Zhanglu, WANG Meijun. Research on the concept connotation, development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation, 2022, 48(5): 6-14. DOI: 10.13272/j.issn.1671-251x.2021120090
    [3]ZHAO Ha. Research on smart mine data sharing scheme based on blockchai[J]. Journal of Mine Automation, 2021, 47(S2): 45-48.
    [4]ZHANG Peng. Exploration on construction of big data system for intelligent mine[J]. Journal of Mine Automation, 2021, 47(S1): 21-23.
    [5]TAN Zhanglu, MA Yingying. Research on coal big data and its developing directio[J]. Journal of Mine Automation, 2018, 44(3): 49-52. DOI: 10.13272/j.issn.1671-251x.2017110059
    [6]ZHANG Xiaoyan, CAI Panliang. Research of informatization framework of transportation and sale for large coal enterprise[J]. Journal of Mine Automation, 2014, 40(4): 93-95. DOI: 10.13272/j.issn.1671-251x.2014.04.023
    [7]HAN A. Research of enterprise service bus technology[J]. Journal of Mine Automation, 2013, 39(11): 50-53. DOI: 10.7526/j.issn.1671-251X.2013.11.014
    [8]YAN Zhao-zhen, HE Yao-yi, DING Rui-qi. Research of Data Interaction Middleware Based on OPC UA[J]. Journal of Mine Automation, 2012, 38(12): 80-82.
    [9]ZHOU Jing. The Application of the Technology of Teradata Data Warehouse[J]. Journal of Mine Automation, 2005, 31(6): 97-99.
    [10]XIE Jian-fei. Using Shared RAM for Data Exchange Between Two CPU[J]. Journal of Mine Automation, 1997, 23(4): 65-68.
  • Cited by

    Periodical cited type(21)

    1. 赵冬. 基于机器视觉的煤矿井下火灾检测方法. 自动化应用. 2025(01): 101-104+107 .
    2. 孙继平,李小伟. 基于图像顺滑度的矿井外因火灾识别及抗干扰方法研究. 中国矿业大学学报. 2025(01): 215-226 .
    3. 耿哲,张德胜. 煤矿井下区域防灭火系统的设计. 矿山机械. 2025(03): 50-55 .
    4. 孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 .
    5. 王炎林,裴晓东,王凯,徐光. 基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究. 工矿自动化. 2025(03): 122-130 . 本站查看
    6. 胡纪年,李雨成,李俊桥,张巍. 基于CNN的矿井外因火灾火源定位方法研究. 中国安全生产科学技术. 2024(03): 134-140 .
    7. 李海龙. 基于机器视觉的煤矿用输送带跑偏检测方法. 矿山机械. 2024(05): 29-33 .
    8. 徐晓敏,朱正磊,刘鑫,郭青玄,赵一夫. 基于无人机监测的电力火灾起火点定位方法研究. 电力大数据. 2024(03): 50-56 .
    9. 孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 .
    10. 于博,陈光波. 基于组合赋权-物元可拓模型的煤矿内因火灾安全评价. 煤矿安全. 2023(02): 61-70 .
    11. 李光宇,李守军,缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法. 矿业安全与环保. 2023(02): 82-87 .
    12. 程开. 选煤厂机械搅拌式浮选机智能控制系统的研究. 煤炭加工与综合利用. 2023(06): 6-12 .
    13. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
    14. 郭玉柱. 斜沟煤矿火灾应急隔离系统设计研究. 煤. 2022(02): 13-16+29 .
    15. 范涌高,周怡敏,张玉玺,闫宋锟,朱丽娜. 井下复合定位系统框架. 计算机测量与控制. 2022(02): 201-206 .
    16. 孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
    17. 孙继平,李小伟,徐旭,张森森. 矿井电火花及热动力灾害紫外图像感知方法研究. 工矿自动化. 2022(04): 1-4+95 . 本站查看
    18. 王勇,胡斌,康渴楠,孔庆东,葛小菡,李辰阳. 智能传感器在消防装备中的应用现状分析. 中国安全科学学报. 2022(S1): 184-188 .
    19. 高懿伟,郭志国,张俊,郑彪华. 我国金属矿山热动力灾害防治技术研究现状与展望. 金属矿山. 2022(12): 196-204 .
    20. 肖国强,范新丽,马砺,骆伟,吴明明. 矿井火灾环境信息动态感知与应急隔离系统. 工矿自动化. 2021(09): 65-69 . 本站查看
    21. 刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (47) PDF downloads (9) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return