Citation: | CAI Feng, WANG Chenshulve, QIAO Liang, et al. Research on data exchange and sharing standards for mining 5G intelligent terminal[J]. Journal of Mine Automation,2023,49(9):98-105. DOI: 10.13272/j.issn.1671-251x.18109 |
[1] |
张帆. 矿井移动通信理论与技术[M]. 哈尔滨:哈尔滨工业大学出版社,2021.
ZHANG Fan. Mine mobile communication theory and technology[M]. Harbin:Harbin Institute of Technology Press,2021.
|
[2] |
张胜利,汤家轩,王猛. “双碳”背景下我国煤炭行业发展面临的挑战与机遇[J]. 中国煤炭,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001
ZHANG Shengli,TANG Jiaxuan,WANG Meng. Challenges and opportunities for the development of China's coal industry under the background of carbon peak and carbon neutrality[J]. China Coal,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001
|
[3] |
崔亚仲,白明亮,李波. 智能矿山大数据关键技术与发展研究[J]. 煤炭科学技术,2019,47(3):66-74. DOI: 10.13199/j.cnki.cst.2019.03.009
CUI Yazhong,BAI Mingliang,LI Bo,et al. Key technology and development research on big data of intelligent mine[J]. Coal Science and Technology,2019,47(3):66-74. DOI: 10.13199/j.cnki.cst.2019.03.009
|
[4] |
王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11. DOI: 10.13272/j.issn.1671-251x.17808
WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11. DOI: 10.13272/j.issn.1671-251x.17808
|
[5] |
王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305. DOI: 10.13225/j.cnki.jccs.2018.0152
WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305. DOI: 10.13225/j.cnki.jccs.2018.0152
|
[6] |
李艺,刘春平,武晓雪. 基于5G技术的智能矿山研究及应用[J]. 中国煤炭,2020,46(11):42-48. DOI: 10.3969/j.issn.1006-530X.2020.11.006
LI Yi,LIU Chunping,WU Xiaoxue. Research and application of 5G technology in intelligent mine[J]. China Coal,2020,46(11):42-48. DOI: 10.3969/j.issn.1006-530X.2020.11.006
|
[7] |
孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动 化,2019,45(10):1-4.
SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
|
[8] |
吴群英,蒋林,王国法,等. 智慧矿山顶层架构设计及其关键技术[J]. 煤炭科学技术,2020,48(7):80-91. DOI: 10.13199/j.cnki.cst.2020.07.007
WU Qunying,JIANG Lin,WANG Guofa,et al. Top-level architecture design and key technologies of smart mine[J]. Coal Science and Technology,2020,48(7):80-91. DOI: 10.13199/j.cnki.cst.2020.07.007
|
[9] |
王国法. 综采自动化智能化无人化成套技术与装备发展方向[J]. 煤炭科学技术,2014,42(9):30-34,39.
WANG Guofa. Development orientation of complete fully-mechanized automation,intelligent and unmanned mining technology and equipment[J]. Coal Science and Technology,2014,42(9):30-34,39.
|
[10] |
孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821
SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821
|
[11] |
张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017
ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017
|
[12] |
葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327
GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327
|
[13] |
韩茜. 智慧矿山信息化标准化系统关键问题研究[D]. 北京:中国矿业大学(北京),2016.
HAN Qian. Study on key issues of intelligent informatization standardization system[D]. Beijing:China University of Mining and Technology-Beijing,2016.
|
[14] |
安标国家矿用产品安全标志中心有限公司. 煤矿5G通信系统安全技术要求(试行)[EB/OL]. [2023-04-17]. https://www.baidu.com/link?url=gPq5gIZOpSLgSmEel61jBNCs_RK1vn3suPV9ZEg0fmFnOfCd00jfNekmsm4RcR3bjtv1VE72aRV9MBh5brpvwYRkG18PWyIJ2CxX6qOJ2Q27J8XCLVo3bxdPihBcRbPb&;wd=&eqid=db78596e003baa7700000005650e8c54.
China Mining Products Safety Approval and Certification Center. Safety technical requirements for 5G communication system in coal mines (to try out) [EB/OL]. [2023-04-17]. https://www.baidu.com/link?url=gPq5gIZOpSLgSmEel61jBNCs_RK1vn3suPV9ZEg0fmFnOfCd00jfNekmsm4RcR3bjtv1VE72aRV9MBh5brpvwYRkG18PWyIJ2CxX6qOJ2Q27J8XCLVo3bxdPihBcRbPb&;wd=&eqid=db78596e003baa7700000005650e8c54.
|
[15] |
GB/T 36962—2018 传感数据分类与代码[S
GB/T 36962-2018 Classification and coding of sensing data[S
|
[16] |
ISO/IEC 20922:2016 Information technology-Message Queuing Telemetry Transport (MQTT) v3.1. 1[S
|
[17] |
GB/T 41868—2022 Modbus TCP安全协议规范[S
GB/T 41868-2022 Modbus TCP security protocol specification[S
|
[18] |
GB/T 36006—2018 控制与通信网络 Safety-over-EtherCAT规范[S
GB/T 36006-2018 Control and communication network:Safety-over-EtherCAT specification[S
|
[19] |
DL/T 634.5104—2009 运动设备及系统第5−104部分:传输规约采用标准传输协议集的IEC 60870−5−101网络访问[S
DL/T 634.5104-2009 Telecontrol equipment and system Part 5-104:Transmission protocols-Network access for IEC 60870-5-101 using standard transport profiles[S
|
[20] |
YD/T 3627—2019 5G数字蜂窝移动通信网 增强移动宽带终端设备技术要求(第一阶段)[S
YD/T 3627-2019 5G digital cellular mobile telecommunication network-technical requirements of eMBB user equipment (Phase1)[S
|
[21] |
YD/T 3561—2019 富通信业务(RCS)总体技术要求(第二阶段)[S
YD/T 3561-2019 General technical requirements of rich communication suite(RCS) (Phase2)[S
|
[22] |
YDT 3988—2021 5G通用模组技术要求(第一阶段)[S
YDT 3988-2021 Technical requirement of 5G superior universal module(Phase1)[S
|
1. |
赵冬. 基于机器视觉的煤矿井下火灾检测方法. 自动化应用. 2025(01): 101-104+107 .
![]() | |
2. |
孙继平,李小伟. 基于图像顺滑度的矿井外因火灾识别及抗干扰方法研究. 中国矿业大学学报. 2025(01): 215-226 .
![]() | |
3. |
耿哲,张德胜. 煤矿井下区域防灭火系统的设计. 矿山机械. 2025(03): 50-55 .
![]() | |
4. |
孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 .
![]() | |
5. |
王炎林,裴晓东,王凯,徐光. 基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究. 工矿自动化. 2025(03): 122-130 .
![]() | |
6. |
胡纪年,李雨成,李俊桥,张巍. 基于CNN的矿井外因火灾火源定位方法研究. 中国安全生产科学技术. 2024(03): 134-140 .
![]() | |
7. |
李海龙. 基于机器视觉的煤矿用输送带跑偏检测方法. 矿山机械. 2024(05): 29-33 .
![]() | |
8. |
徐晓敏,朱正磊,刘鑫,郭青玄,赵一夫. 基于无人机监测的电力火灾起火点定位方法研究. 电力大数据. 2024(03): 50-56 .
![]() | |
9. |
孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 .
![]() | |
10. |
于博,陈光波. 基于组合赋权-物元可拓模型的煤矿内因火灾安全评价. 煤矿安全. 2023(02): 61-70 .
![]() | |
11. |
李光宇,李守军,缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法. 矿业安全与环保. 2023(02): 82-87 .
![]() | |
12. |
程开. 选煤厂机械搅拌式浮选机智能控制系统的研究. 煤炭加工与综合利用. 2023(06): 6-12 .
![]() | |
13. |
孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 .
![]() | |
14. |
郭玉柱. 斜沟煤矿火灾应急隔离系统设计研究. 煤. 2022(02): 13-16+29 .
![]() | |
15. |
范涌高,周怡敏,张玉玺,闫宋锟,朱丽娜. 井下复合定位系统框架. 计算机测量与控制. 2022(02): 201-206 .
![]() | |
16. |
孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
![]() | |
17. |
孙继平,李小伟,徐旭,张森森. 矿井电火花及热动力灾害紫外图像感知方法研究. 工矿自动化. 2022(04): 1-4+95 .
![]() | |
18. |
王勇,胡斌,康渴楠,孔庆东,葛小菡,李辰阳. 智能传感器在消防装备中的应用现状分析. 中国安全科学学报. 2022(S1): 184-188 .
![]() | |
19. |
高懿伟,郭志国,张俊,郑彪华. 我国金属矿山热动力灾害防治技术研究现状与展望. 金属矿山. 2022(12): 196-204 .
![]() | |
20. |
肖国强,范新丽,马砺,骆伟,吴明明. 矿井火灾环境信息动态感知与应急隔离系统. 工矿自动化. 2021(09): 65-69 .
![]() | |
21. |
刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 .
![]() |