CAI Feng, WANG Chenshulve, QIAO Liang, et al. Research on data exchange and sharing standards for mining 5G intelligent terminal[J]. Journal of Mine Automation,2023,49(9):98-105. DOI: 10.13272/j.issn.1671-251x.18109
Citation: CAI Feng, WANG Chenshulve, QIAO Liang, et al. Research on data exchange and sharing standards for mining 5G intelligent terminal[J]. Journal of Mine Automation,2023,49(9):98-105. DOI: 10.13272/j.issn.1671-251x.18109

Research on data exchange and sharing standards for mining 5G intelligent terminal

More Information
  • Received Date: April 20, 2023
  • Revised Date: September 21, 2023
  • Available Online: September 27, 2023
  • 5G technology is the foundation for achieving intelligent mining construction. In response to the problem of difficult interoperability between mining 5G intelligent terminals and control platforms among different manufacturers, it is necessary to unify and standardize the data exchange and sharing process in the 5G system. The deployment architecture of "5G+intelligent mining" is proposed. The mining 5G intelligent terminals can interact and share data with servers containing control platforms through 5G base stations, switches, and 5G core networks in coal mines. This paper introduces the message types, message transmission formats, message composition, and message connection methods transmitted in the mining 5G system. For specific application scenarios in the mining field, the data in the mining 5G system is divided into voice data, video data, sensor data, and control data. The data types transmitted by the mining 5G intelligent terminal in different application scenarios are provided. This paper analyzes the basic transmission capabilities that mining 5G intelligent terminals and control platforms should have to meet data interaction. It is pointed out that the process of data interaction between mining 5G intelligent terminals and control platforms includes device information query and reporting, device upgrade, log collection, alarm issuance and processing, and platform configuration issuance and processing. It proposes the participating entities, security levels, and processes for data sharing of mining 5G intelligent terminals (including data aggregation, application, authorization, provision, and feedback). By implementing standardized processes, while ensuring communication reliability, the data exchange and sharing process under the "5G+intelligent mine" system architecture has been simplified to accelerate the intelligent construction of mines.
  • [1]
    张帆. 矿井移动通信理论与技术[M]. 哈尔滨:哈尔滨工业大学出版社,2021.

    ZHANG Fan. Mine mobile communication theory and technology[M]. Harbin:Harbin Institute of Technology Press,2021.
    [2]
    张胜利,汤家轩,王猛. “双碳”背景下我国煤炭行业发展面临的挑战与机遇[J]. 中国煤炭,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001

    ZHANG Shengli,TANG Jiaxuan,WANG Meng. Challenges and opportunities for the development of China's coal industry under the background of carbon peak and carbon neutrality[J]. China Coal,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001
    [3]
    崔亚仲,白明亮,李波. 智能矿山大数据关键技术与发展研究[J]. 煤炭科学技术,2019,47(3):66-74. DOI: 10.13199/j.cnki.cst.2019.03.009

    CUI Yazhong,BAI Mingliang,LI Bo,et al. Key technology and development research on big data of intelligent mine[J]. Coal Science and Technology,2019,47(3):66-74. DOI: 10.13199/j.cnki.cst.2019.03.009
    [4]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11. DOI: 10.13272/j.issn.1671-251x.17808

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11. DOI: 10.13272/j.issn.1671-251x.17808
    [5]
    王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305. DOI: 10.13225/j.cnki.jccs.2018.0152

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305. DOI: 10.13225/j.cnki.jccs.2018.0152
    [6]
    李艺,刘春平,武晓雪. 基于5G技术的智能矿山研究及应用[J]. 中国煤炭,2020,46(11):42-48. DOI: 10.3969/j.issn.1006-530X.2020.11.006

    LI Yi,LIU Chunping,WU Xiaoxue. Research and application of 5G technology in intelligent mine[J]. China Coal,2020,46(11):42-48. DOI: 10.3969/j.issn.1006-530X.2020.11.006
    [7]
    孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动 化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
    [8]
    吴群英,蒋林,王国法,等. 智慧矿山顶层架构设计及其关键技术[J]. 煤炭科学技术,2020,48(7):80-91. DOI: 10.13199/j.cnki.cst.2020.07.007

    WU Qunying,JIANG Lin,WANG Guofa,et al. Top-level architecture design and key technologies of smart mine[J]. Coal Science and Technology,2020,48(7):80-91. DOI: 10.13199/j.cnki.cst.2020.07.007
    [9]
    王国法. 综采自动化智能化无人化成套技术与装备发展方向[J]. 煤炭科学技术,2014,42(9):30-34,39.

    WANG Guofa. Development orientation of complete fully-mechanized automation,intelligent and unmanned mining technology and equipment[J]. Coal Science and Technology,2014,42(9):30-34,39.
    [10]
    孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821
    [11]
    张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017

    ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017
    [12]
    葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327

    GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327
    [13]
    韩茜. 智慧矿山信息化标准化系统关键问题研究[D]. 北京:中国矿业大学(北京),2016.

    HAN Qian. Study on key issues of intelligent informatization standardization system[D]. Beijing:China University of Mining and Technology-Beijing,2016.
    [14]
    安标国家矿用产品安全标志中心有限公司. 煤矿5G通信系统安全技术要求(试行)[EB/OL]. [2023-04-17]. https://www.baidu.com/link?url=gPq5gIZOpSLgSmEel61jBNCs_RK1vn3suPV9ZEg0fmFnOfCd00jfNekmsm4RcR3bjtv1VE72aRV9MBh5brpvwYRkG18PWyIJ2CxX6qOJ2Q27J8XCLVo3bxdPihBcRbPb&;wd=&eqid=db78596e003baa7700000005650e8c54.

    China Mining Products Safety Approval and Certification Center. Safety technical requirements for 5G communication system in coal mines (to try out) [EB/OL]. [2023-04-17]. https://www.baidu.com/link?url=gPq5gIZOpSLgSmEel61jBNCs_RK1vn3suPV9ZEg0fmFnOfCd00jfNekmsm4RcR3bjtv1VE72aRV9MBh5brpvwYRkG18PWyIJ2CxX6qOJ2Q27J8XCLVo3bxdPihBcRbPb&;wd=&eqid=db78596e003baa7700000005650e8c54.
    [15]
    GB/T 36962—2018 传感数据分类与代码[S

    GB/T 36962-2018 Classification and coding of sensing data[S
    [16]
    ISO/IEC 20922:2016 Information technology-Message Queuing Telemetry Transport (MQTT) v3.1. 1[S
    [17]
    GB/T 41868—2022 Modbus TCP安全协议规范[S

    GB/T 41868-2022 Modbus TCP security protocol specification[S
    [18]
    GB/T 36006—2018 控制与通信网络 Safety-over-EtherCAT规范[S

    GB/T 36006-2018 Control and communication network:Safety-over-EtherCAT specification[S
    [19]
    DL/T 634.5104—2009 运动设备及系统第5−104部分:传输规约采用标准传输协议集的IEC 60870−5−101网络访问[S

    DL/T 634.5104-2009 Telecontrol equipment and system Part 5-104:Transmission protocols-Network access for IEC 60870-5-101 using standard transport profiles[S
    [20]
    YD/T 3627—2019 5G数字蜂窝移动通信网 增强移动宽带终端设备技术要求(第一阶段)[S

    YD/T 3627-2019 5G digital cellular mobile telecommunication network-technical requirements of eMBB user equipment (Phase1)[S
    [21]
    YD/T 3561—2019 富通信业务(RCS)总体技术要求(第二阶段)[S

    YD/T 3561-2019 General technical requirements of rich communication suite(RCS) (Phase2)[S
    [22]
    YDT 3988—2021 5G通用模组技术要求(第一阶段)[S

    YDT 3988-2021 Technical requirement of 5G superior universal module(Phase1)[S
  • Related Articles

    [1]SHANG Weidong, WANG Haili, ZHANG Xiaoxia, WANG Hao, XU Hualong. A coal mine data acquisition, fusion and sharing system based on object model[J]. Journal of Mine Automation, 2024, 50(1): 17-24, 34. DOI: 10.13272/j.issn.1671-251x.2023070047
    [2]TAN Zhanglu, WANG Meijun. Research on the concept connotation, development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation, 2022, 48(5): 6-14. DOI: 10.13272/j.issn.1671-251x.2021120090
    [3]ZHAO Ha. Research on smart mine data sharing scheme based on blockchai[J]. Journal of Mine Automation, 2021, 47(S2): 45-48.
    [4]ZHANG Peng. Exploration on construction of big data system for intelligent mine[J]. Journal of Mine Automation, 2021, 47(S1): 21-23.
    [5]TAN Zhanglu, MA Yingying. Research on coal big data and its developing directio[J]. Journal of Mine Automation, 2018, 44(3): 49-52. DOI: 10.13272/j.issn.1671-251x.2017110059
    [6]ZHANG Xiaoyan, CAI Panliang. Research of informatization framework of transportation and sale for large coal enterprise[J]. Journal of Mine Automation, 2014, 40(4): 93-95. DOI: 10.13272/j.issn.1671-251x.2014.04.023
    [7]HAN A. Research of enterprise service bus technology[J]. Journal of Mine Automation, 2013, 39(11): 50-53. DOI: 10.7526/j.issn.1671-251X.2013.11.014
    [8]YAN Zhao-zhen, HE Yao-yi, DING Rui-qi. Research of Data Interaction Middleware Based on OPC UA[J]. Journal of Mine Automation, 2012, 38(12): 80-82.
    [9]ZHOU Jing. The Application of the Technology of Teradata Data Warehouse[J]. Journal of Mine Automation, 2005, 31(6): 97-99.
    [10]XIE Jian-fei. Using Shared RAM for Data Exchange Between Two CPU[J]. Journal of Mine Automation, 1997, 23(4): 65-68.
  • Cited by

    Periodical cited type(21)

    1. 赵冬. 基于机器视觉的煤矿井下火灾检测方法. 自动化应用. 2025(01): 101-104+107 .
    2. 孙继平,李小伟. 基于图像顺滑度的矿井外因火灾识别及抗干扰方法研究. 中国矿业大学学报. 2025(01): 215-226 .
    3. 耿哲,张德胜. 煤矿井下区域防灭火系统的设计. 矿山机械. 2025(03): 50-55 .
    4. 孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 .
    5. 王炎林,裴晓东,王凯,徐光. 基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究. 工矿自动化. 2025(03): 122-130 . 本站查看
    6. 胡纪年,李雨成,李俊桥,张巍. 基于CNN的矿井外因火灾火源定位方法研究. 中国安全生产科学技术. 2024(03): 134-140 .
    7. 李海龙. 基于机器视觉的煤矿用输送带跑偏检测方法. 矿山机械. 2024(05): 29-33 .
    8. 徐晓敏,朱正磊,刘鑫,郭青玄,赵一夫. 基于无人机监测的电力火灾起火点定位方法研究. 电力大数据. 2024(03): 50-56 .
    9. 孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 .
    10. 于博,陈光波. 基于组合赋权-物元可拓模型的煤矿内因火灾安全评价. 煤矿安全. 2023(02): 61-70 .
    11. 李光宇,李守军,缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法. 矿业安全与环保. 2023(02): 82-87 .
    12. 程开. 选煤厂机械搅拌式浮选机智能控制系统的研究. 煤炭加工与综合利用. 2023(06): 6-12 .
    13. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
    14. 郭玉柱. 斜沟煤矿火灾应急隔离系统设计研究. 煤. 2022(02): 13-16+29 .
    15. 范涌高,周怡敏,张玉玺,闫宋锟,朱丽娜. 井下复合定位系统框架. 计算机测量与控制. 2022(02): 201-206 .
    16. 孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
    17. 孙继平,李小伟,徐旭,张森森. 矿井电火花及热动力灾害紫外图像感知方法研究. 工矿自动化. 2022(04): 1-4+95 . 本站查看
    18. 王勇,胡斌,康渴楠,孔庆东,葛小菡,李辰阳. 智能传感器在消防装备中的应用现状分析. 中国安全科学学报. 2022(S1): 184-188 .
    19. 高懿伟,郭志国,张俊,郑彪华. 我国金属矿山热动力灾害防治技术研究现状与展望. 金属矿山. 2022(12): 196-204 .
    20. 肖国强,范新丽,马砺,骆伟,吴明明. 矿井火灾环境信息动态感知与应急隔离系统. 工矿自动化. 2021(09): 65-69 . 本站查看
    21. 刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (1327) PDF downloads (47) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return