Citation: | JIAO Mingzhi, SHEN Zhongli, ZHOU Yangming, et al. Research progress on neural network algorithms for mixed gas detection in coal mines[J]. Journal of Mine Automation,2023,49(9):115-121. DOI: 10.13272/j.issn.1671-251x.18105 |
[1] |
金智新,王宏伟,付翔. HCPS理论体系下新一代智能煤矿发展路径[J]. 工矿自动化,2022,48(10):1-12.
JIN Zhixin,WANG Hongwei,FU Xiang. Development path of new generation intelligent coal mine under HCPS theory system[J]. Journal of Mine Automation,2022,48(10):1-12.
|
[2] |
王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.
WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
|
[3] |
许刚. 基于GA-RBF的煤矿机器人井下混合气体检测系统的研究[J]. 计算技术与自动化,2018,37(3):66-68.
XU Gang. Research on underground gas mixture detection system for coal mine robot based on GA-RBF[J]. Computing Technology and Automation,2018,37(3):66-68.
|
[4] |
XU Xuebin,QIN Hu,ZHOU Jie. Cyber intrusion detection based on a mutative scale chaotic bat algorithm with backpropagation neural network[J]. Security and Communication Networks,2022. DOI: 10.1155/2022/5605404.
|
[5] |
LECUN Y,BOSER B,DENKER J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation,1989,1(4):541-551. DOI: 10.1162/neco.1989.1.4.541
|
[6] |
李鹏,徐永凯,杨佳康,等. 基于一维卷积神经网络的气体识别方法研究[J]. 电子器件,2022,45(3):645-650.
LI Peng,XU Yongkai,YANG Jiakang,et al. Study on gas recognition method based on one-dimensional convolutional neural network[J]. Chinese Journal of Electron Devices,2022,45(3):645-650.
|
[7] |
PENG Pai,ZHAO Xiaojin,PAN Xiaofang,et al. Gas classification using deep convolutional neural networks[J]. Sensors 2018,18(1). DOI: 10.3390/s18010157.
|
[8] |
谭光韬,张文文,王磊. 气体传感器阵列混合气体检测算法研究[J]. 电子测量与仪器学报,2020,34(7):95-102.
TAN Guangtao,ZHANG Wenwen,WANG Lei. Research on mixed gas detection algorithm of gas sensor array[J]. Journal of Electronic Measurement and Instrumentation,2020,34(7):95-102.
|
[9] |
SHARMA M,MAITY T. Multisensor data-fusion-based gas hazard prediction using DSET and 1DCNN for underground longwall coal mine[J]. IEEE Internet of Things Journal,2022,9(21):21064-21072. DOI: 10.1109/JIOT.2022.3175724
|
[10] |
ZHAO Xiaojin,WEN Zhihuang,PAN Xiaofang,et al. Mixture gases classification based on multi-label one-dimensional deep convolutional neural network[J]. IEEE Access,2019,7:12630-12637. DOI: 10.1109/ACCESS.2019.2892754
|
[11] |
LI Xiulei,GUO Jiayi,XU Wangping,et al. Optimization of the mixed gas detection method based on neural network algorithm[J]. ACS Sensors,2023,8(2):822-828. DOI: 10.1021/acssensors.2c02450
|
[12] |
罗敏,黄小美,吕山. 基于PCA−LSTM的城市燃气日负荷预测[C]. 中国燃气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会2019年学术年会,上海,2019:120-132.
LUO Min,HUANG Xiaomei,LYU Shan. Daily load forecasting of urban gas based on PCA-LSTM[C]. China Gas Operation and Safety Symposium (10th) and 2019 Academic Annual Meeting of the Gas Branch of the Chinese Civil Engineering Society,Shanghai,2019:120-132.
|
[13] |
温志煌. 用于智能电子鼻系统的新型混合气体识别算法研究[D]. 深圳:深圳大学,2019.
WEN Zhihuang. Research on the novel mixture gas recognition algorithms for smart electronic nose system[D]. Shenzhen:Shenzhen University,2019.
|
[14] |
LYU Pingyang,CHEN Ning,MAO Shanjun,et al. LSTM based encoder-decoder for short-term predictions of gas concentration using multi-sensor fusion[J]. Process Safety and Environmental Protection,2020,137:93-105. DOI: 10.1016/j.psep.2020.02.021
|
[15] |
ZHANG Wenwen,WANG Lei,CHEN Jia,et al. A novel gas recognition and concentration detection algorithm for artificial olfaction[J]. IEEE Transactions on Instrumentation and Measurement,2021,70. DOI: 10.1109/TIM.2021.3071313.
|
[16] |
BAKILER H,GUNEY S. Estimation of concentration values of different gases based on long short-term memory by using electronic nose[J]. Biomedical Signal Processing and Control,2021,69. DOI: 10.1016/j.bspc.2021.102908.
|
[17] |
张海庆. 基于LSTM循环神经网络的矿用甲烷传感器自校准研究[J]. 煤矿机械,2022,43(6):168-171.
ZHANG Haiqing. Research on self-calibration of mine methane sensor based on LSTM recurrent neural network[J]. Coal Mine Machinery,2022,43(6):168-171.
|
[18] |
WANG Jianjun,XU Zongben. New study on neural networks:the essential order of approximation[J]. Neural Networks,2010,23(5):618-624. DOI: 10.1016/j.neunet.2010.01.004
|
[19] |
WANG Xi,ZHOU Yangming,ZHAO Zhikai,et al. Advanced algorithms for low dimensional metal oxides-based electronic nose application:a review[J]. Crystals,2023,13(4). DOI: 10.3390/cryst13040615.
|
[20] |
YU Hao,XIE Tiantian,PASZCZYNSKI S,et al. Advantages of radial basis function networks for dynamic system design[J]. IEEE Transactions on Industrial Electronics,2011,58(12):5438-5450. DOI: 10.1109/TIE.2011.2164773
|
[21] |
赵金宪,于光华. 瓦斯浓度预测的混沌时序RBF神经网络模型[J]. 黑龙江科技学院学报,2010,20(2):131-134.
ZHAO Jinxian,YU Guanghua. Model of chaotic sequence and RBF neural network on gas concentration forecast[J]. Journal of Heilongjiang Institute of Science and Technology,2010,20(2):131-134.
|
[22] |
李万庆,裴志全,孟文清. AHP−RBF神经网络在煤矿安全风险评价中的应用[J]. 河北工程大学学报(自然科学版),2014,31(2):101-105.
LI Wanqing,PEI Zhiquan,MENG Wenqing. The application of AHP-RBF neural network in coal mine safety risk evaluation[J]. Journal of Hebei University of Engineering(Natural Science Edition),2014,31(2):101-105.
|
[23] |
西安科技大学. 煤矿井下多气体浓度采集传输装置:2014206299489[P]. 2014-10-28.
Xi'an University of Science and Technology. Multi gas concentration collection and transmission device in coal mine underground:2014206299489[P]. 2014-10-28.
|
1. |
李重重,姚钰鹏. 基于工况触发的采煤机滚筒截割高度模板生成方法. 工矿自动化. 2024(04): 144-152 .
![]() | |
2. |
曹杨. 高适应性采煤机支撑装置设计. 煤矿机械. 2022(03): 9-10 .
![]() | |
3. |
于颖. 采煤机械标准体系分析研究. 煤炭科学技术. 2021(10): 162-166 .
![]() | |
4. |
何斌,熊裕涛. 电牵引采煤机滑膜变结构控制. 工业控制计算机. 2020(06): 124-125 .
![]() | |
5. |
张奎. MG300/700采煤机断电故障分析及改进. 煤矿机械. 2020(09): 181-182 .
![]() | |
6. |
李杏,丁华,杨琨. 多层次多粒度采煤机创新设计知识表达方法. 工矿自动化. 2019(01): 22-27 .
![]() | |
7. |
赵丽娟,靳予记,黄凯. 随机载荷下截割部输出轴可靠性分析. 机械强度. 2019(04): 864-870 .
![]() | |
8. |
张晓永. 7.2 m采高厚煤层采煤机设计. 煤矿机械. 2019(09): 1-4 .
![]() | |
9. |
葛红兵. 电牵引采煤机牵引部可靠性分析. 工矿自动化. 2018(04): 51-56 .
![]() |