LI Xing, DING Hua, YANG Kun. Multi-level and multi-granularity innovative design knowledge expression method of shearer[J]. Journal of Mine Automation, 2019, 45(1): 22-27. DOI: 10.13272/j.issn.1671-251x.2018050073
Citation: LI Xing, DING Hua, YANG Kun. Multi-level and multi-granularity innovative design knowledge expression method of shearer[J]. Journal of Mine Automation, 2019, 45(1): 22-27. DOI: 10.13272/j.issn.1671-251x.2018050073

Multi-level and multi-granularity innovative design knowledge expression method of shearer

More Information
  • In view of problems that existing knowledge expression methods are difficult to fully and effectively express innovative design knowledge of shearer, and knowledge expression of existing special knowledge base is not comprehensive enough and its retrieval efficiency is not high, in order to realize reuse of innovative design knowledge and experience of shearer, inspire ability of knowledge analogy transfer by designers, a multi-level and multi-granularity knowledge innovative design expression method of shearer was proposed. Six attributes are extracted including parameter, structure, function, principle, effect and domain. The attributes are described by knowledge with different abstract granularity, each granularity corresponds to abstraction levels of concept layer, semantic relationship layer and instance layer. Knowledge items are generated through feature attribute description, and multi-level and multi-granularity innovative design knowledge base of shearer is constructed. Through ontology reasoning and semantic extension, knowledge of different levels and different granularities is retrieved from local knowledge base and Internet resources, thus realizes multi-level and multi-granularity expression of innovative design knowledge of the shearer. The feasibility of the method was verified by improved structure design of shearer drum.
  • Related Articles

    [1]SUN Lei, SUN Shuxin, WANG Bowen, REN Hehe, PENG Hui. Research on network security service chain technology of data center in coal mine enterprise[J]. Journal of Mine Automation, 2022, 48(7): 149-154. DOI: 10.13272/j.issn.1671-251x.17926
    [2]WU Haotia. Discussion on network security protection of coal enterprises[J]. Journal of Mine Automation, 2021, 47(S2): 165-167.
    [3]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [4]LIU Dong, WANG Xiang-ju, YU Jing-jing. Design of Wireless Network Interface of Mine-used Camera Based on AR2524 Chip[J]. Journal of Mine Automation, 2011, 37(8): 122-125.
    [5]LAI Cheng-yu, YIN Kai. Design of Networked Sensor System Interface Based on Internet[J]. Journal of Mine Automation, 2008, 34(4): 116-118.
    [6]YU Zhong-an, LI Hui-bi. Integrated Technology of Industrial Control Network and Information Network[J]. Journal of Mine Automation, 2008, 34(1): 76-79.
    [7]SU Bai-shun, LIU Jia-lei, LI Chang-qing. Implementation Scheme of Adapter of External Network Interface[J]. Journal of Mine Automation, 2007, 33(5): 120-122.
    [8]PU Xin-zheng, LI Li. Design of PCI Interface Card of LonWorks Control Networks[J]. Journal of Mine Automation, 2007, 33(2): 94-96.
    [9]PAN Yu. The Security Study of Coal Mine Information System Based on Computer Network[J]. Journal of Mine Automation, 2005, 31(4): 28-31.
    [10]GU Jun , CHEN Zhi-guo , QIAN Jian-sheng , ZHANG Hong , ZHU Yi-cun . Application of Computer Network in Coal Sale Management Business[J]. Journal of Mine Automation, 2001, 27(5): 29-30.
  • Cited by

    Periodical cited type(10)

    1. 何勇华. 综采工作面液压支架直线度控制技术研究. 煤矿机械. 2025(03): 37-41 .
    2. 朱仲飞. 虚拟现实技术在中职物理电学实验中的应用研究. 科教导刊. 2025(08): 10-12 .
    3. 程醉,熊崎秀,任倩. 产业工人职业技能培训中数字孪生的价值意蕴、应用路径与实践审思. 当代职业教育. 2025(03): 94-101 .
    4. 逯晓臻,李战华,邬鑫. 基于模糊自适应PID的煤矿井下刮板输送机直线度自动控制. 自动化应用. 2024(03): 83-85+88 .
    5. 陈湘源. 综采工作面轨迹测量与直线度控制方法. 矿业研究与开发. 2024(03): 185-191 .
    6. 任保将,郭李刚,王书,张凯,杜锋. 基于MapleSim-MATLAB双向耦合技术的液压支架孪生体构建. 煤炭技术. 2024(07): 244-247 .
    7. 廖志伟,高龙,曹军,李晓围. 基于深度学习的刮板输送机异物检测方法研究. 中国煤炭. 2024(08): 165-170 .
    8. 闫振国,王延平,王艳. 基于NOSA的煤矿企业井下微环境风险评估研究. 技术与创新管理. 2024(05): 545-552 .
    9. 王云飞,赵继云,张鹤,王浩,张阳. 基于神经网络补偿的液压支架群推移系统直线度控制方法. 煤炭科学技术. 2024(11): 174-185 .
    10. 方新秋,陈宁宁,冯豪天,宋扬,梁敏富,吴刚,张璠,李家璇,李猛,乔富康,吴洋. 刮板输送机直线度光纤精准感知与调直关键技术. 采矿与安全工程学报. 2023(05): 1043-1056 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (86) PDF downloads (14) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return