CUI Yao, LI Tianyue, YE Zhuang, et al. Digital twin system architecture and key technology of following process for fully mechanized mining[J]. Journal of Mine Automation,2023,49(2):56-62, 76. DOI: 10.13272/j.issn.1671-251x.18055
Citation: CUI Yao, LI Tianyue, YE Zhuang, et al. Digital twin system architecture and key technology of following process for fully mechanized mining[J]. Journal of Mine Automation,2023,49(2):56-62, 76. DOI: 10.13272/j.issn.1671-251x.18055

Digital twin system architecture and key technology of following process for fully mechanized mining

More Information
  • Received Date: December 05, 2022
  • Revised Date: February 02, 2023
  • Available Online: February 26, 2023
  • The process design and parameter debugging of automatic following machine for fully mechanized mining are costly, time-consuming and cumbersome. In order to solve the above problems, the digital twin system architecture of following process for fully mechanized mining is proposed. The study analyzes the aspects of physical equipment, virtual and real interaction, twin data, mechanism model, simulation algorithm and process application. The key technologies such as the transmission and storage of the following process data, the playback of the following process history, the real-time following process twin deduction, the rehearsal simulation of following process, and the instruction scheduling of following process are described in detail. The paper puts forward the technical roadmap of the digital twin system of following process for fully mechanized machining. Through 10 Gigabit optical fiber ring network+5G communication, the shearer process action data is collected to the shearer host. The support process action data sent by the serial support controller is collected to the electrohydraulic control host. The process data is collected, classified and coded according to the action sequence as the data source for the playback of the process. At the same time, the host computer forwards the real-time reported following process data to the 3D digital twin system. The twin system deduces the following process in the 3D virtual scene. After the following process parameters are configured on the human-computer interface, the following process for fully mechanized mining can be previewed in the 3D scene. During the real-time mining process, the system will collect all kinds of sensor data and issue process scheduling instructions in combination with the rehearsal of error-free following process. The support controller is changed from a decision-maker to an executor to overcome the limitation of the limited computing power of the controller due to the lack of underground space. The field application results show that the digital twin system can provide technical reference for the process design, parameter configuration and simulation test of following process for fully mechanized mining. The system can shorten the development cycle of the following process from 14 days to 1 day, making the modification of the following process design more convenient. The system improves the following automation rate in working face to more than 90%.
  • [1]
    陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808-1820. DOI: 10.13225/j.cnki.jccs.2021.0368

    CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808-1820. DOI: 10.13225/j.cnki.jccs.2021.0368
    [2]
    王峰. 综采无人工作面自动化开采技术研究与应用[J]. 工矿自动化,2015,41(7):5-9. DOI: 10.13272/j.issn.1671-251x.2015.07.002

    WANG Feng. Research and application of automatic mining technology of unmanned fully-mechanized coal mining face[J]. Industry and Mine Automation,2015,41(7):5-9. DOI: 10.13272/j.issn.1671-251x.2015.07.002
    [3]
    刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48. DOI: 10.13272/j.issn.1671-251x.17520

    LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48. DOI: 10.13272/j.issn.1671-251x.17520
    [4]
    高卫勇,张敏娟. 综采工作面液压支架跟机自动化工艺研究[J]. 工矿自动化,2018,44(11):14-17. DOI: 10.13272/j.issn.1671-251x.2018050040

    GAO Weiyong,ZHANG Minjuan. Research on following automation technology of hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2018,44(11):14-17. DOI: 10.13272/j.issn.1671-251x.2018050040
    [5]
    王虹,尤秀松,李首滨,等. 基于遗传算法与BP神经网络的支架跟机自动化研究[J]. 煤炭科学技术,2021,49(1):272-277. DOI: 10.13199/j.cnki.cst.2021.01.024

    WANG Hong,YOU Xiusong,LI Shoubin,et al. Research on automation of support based on genetic algorithm and BP neural network[J]. Coal Science and Technology,2021,49(1):272-277. DOI: 10.13199/j.cnki.cst.2021.01.024
    [6]
    李骏,林福严. 跟机自动化中采煤机自动控制方法研究[J]. 工矿自动化,2014,40(2):1-4.

    LI Jun,LIN Fuyan. Research of automatic control method of shearer in machinery-tracked automation[J]. Industry and Mine Automation,2014,40(2):1-4.
    [7]
    付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339
    [8]
    GRIEVES M, VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[M]//KAHLEN J, FLUMERFELT S, ALVES A. Transdisciplinary perspectives on complex systems. Berlin: Springer-Verlag, 2017.
    [9]
    刘大同,郭凯,王本宽,等. 数字孪生技术综述与展望[J]. 仪器仪表学报,2018,39(11):1-10. DOI: 10.19650/j.cnki.cjsi.J1804099

    LIU Datong,GUO Kai,WANG Benkuan,et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument,2018,39(11):1-10. DOI: 10.19650/j.cnki.cjsi.J1804099
    [10]
    丁恩杰,俞啸,夏冰,等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报,2022,47(1):564-578.

    DING Enjie,YU Xiao,XIA Bing,et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society,2022,47(1):564-578.
    [11]
    葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327

    GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:Technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327
    [12]
    张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017

    ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017
    [13]
    苗丙,葛世荣,郭一楠,等. 煤矿数字孪生智采工作面系统构建[J]. 矿业科学学报,2022,7(2):143-153. DOI: 10.19606/j.cnki.jmst.2022.02.001

    MIAO Bing,GE Shirong,GUO Yinan,et al. Construction of digital twin system for intelligent mining in coal mines[J]. Journal of Mining Science and Technology,2022,7(2):143-153. DOI: 10.19606/j.cnki.jmst.2022.02.001
    [14]
    谢嘉成,王学文,杨兆建. 基于数字孪生的综采工作面生产系统设计与运行模式[J]. 计算机集成制造系统,2019,25(6):1381-1391. DOI: 10.13196/j.cims.2019.06.007

    XIE Jiacheng,WANG Xuewen,YANG Zhaojian. Design and operation mode of production system of fully mechanized coal mining face based on digital twin theory[J]. Computer Integrated Manufacturing Systems,2019,25(6):1381-1391. DOI: 10.13196/j.cims.2019.06.007
    [15]
    XIE Jiacheng,WANG Xuewen,YANG Zhaojian. Virtual monitoring method for hydraulic supports based on digital twin theory[J]. Mining Technology,2019,128(2):77-87. DOI: 10.1080/25726668.2019.1569367
    [16]
    LI Juanli,LIU Yang,XIE Jiacheng,et al. Cutting path planning technology of shearer based on virtual reality[J]. Applied Sciences,2020,10(3):771. DOI: 10.3390/app10030771
    [17]
    LI Suhua,XIE Jiacheng,REN Fang,et al. Virtual straightening of scraper conveyor based on the position and attitude solution of industrial robot model[J]. International Journal of Coal Science & Technology,2021,8(5):1149-1170.
    [18]
    张超,张旭辉,毛清华,等. 煤矿智能掘进机器人数字孪生系统研究及应用[J]. 西安科技大学学报,2020,40(5):813-822. DOI: 10.13800/j.cnki.xakjdxxb.2020.0509

    ZHANG Chao,ZHANG Xuhui,MAO Qinghua,et al. Research and application of digital twin system for intelligent tunneling equipment in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):813-822. DOI: 10.13800/j.cnki.xakjdxxb.2020.0509
    [19]
    张旭辉,张超,杨文娟,等. 数字孪生驱动采掘工作面远程控制技术分析及发展趋势[J]. 智能矿山,2020,1(1):112-124.

    ZHANG Xuhui,ZHANG Chao,YANG Wenjuan,et al. Current status analysis and development trend of remote control technology of digital twin-driven mining face[J]. Journal of Intelligent Mine,2020,1(1):112-124.
    [20]
    张旭辉,张超,王妙云,等. 数字孪生驱动的悬臂式掘进机虚拟操控技术[J]. 计算机集成制造系统,2021,27(6):1617-1628. DOI: 10.13196/j.cims.2021.06.008

    ZHANG Xuhui,ZHANG Chao,WANG Miaoyun,et al. Digital twin-driven virtual control technology of cantilever roadheader[J]. Computer Integrated Manufacturing Systems,2021,27(6):1617-1628. DOI: 10.13196/j.cims.2021.06.008
    [21]
    丁华,杨亮亮,杨兆建,等. 数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程,2020,31(7):815-823. DOI: 10.3969/j.issn.1004-132X.2020.07.007

    DING Hua,YANG Liangliang,YANG Zhaojian,et al. Health prediction of shearers driven by digital twin and deep learning[J]. China Mechanical Engineering,2020,31(7):815-823. DOI: 10.3969/j.issn.1004-132X.2020.07.007
  • Related Articles

    [1]CHEN Xiangyuan, PAN Tao, ZHOU Bin. Global scheduling model for trackless rubber-tyred vehicle in underground coal mines[J]. Journal of Mine Automation, 2023, 49(12): 63-69. DOI: 10.13272/j.issn.1671-251x.2023010006
    [2]WEN Jiayan, WEN Haichao, CHENG Yang, LUO Shaomeng, HE Weichao. Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm[J]. Journal of Mine Automation, 2023, 49(2): 94-101. DOI: 10.13272/j.issn.1671-251x.2022080008
    [3]LI Zaiyou, SUN Yanbin, WANG Xiaoguang, CHEN Yong, LIU Guangwei, GUO Zhiqing. Unmanned truck transportation scheduling in open-pit mines based on improved tunicate swarm algorithm[J]. Journal of Mine Automation, 2022, 48(6): 87-94, 127. DOI: 10.13272/j.issn.1671-251x.17929
    [4]MEN Fei, JIANG Xi. Improved gray wolf optimization algorithm for solving low-carbon transportation scheduling problem in open-pit mines[J]. Journal of Mine Automation, 2020, 46(12): 90-94. DOI: 10.13272/j.issn.1671-251x.2020070049
    [5]LEI Xuefeng, LIU Weidong, ZHANG Shen. Research of task scheduling of cyber physical system of coal preparation plant[J]. Journal of Mine Automation, 2015, 41(3): 61-65. DOI: 10.13272/j.issn.1671-251x.2015.03.016
    [6]JIANG Xiu-zhu, XU Zhao, LI Xiang-dong, YUAN Wei-chen, FENG Dong-qin. Research of real-time adaptive scheduling algorithm for across segments delay in EPA[J]. Journal of Mine Automation, 2013, 39(10): 35-39. DOI: 10.7526/j.issn.1671-251X.2013.10.010
    [7]GE Jie-ru, ZHOU Jian. Design of intelligent scheduling system of mine railway transportatio[J]. Journal of Mine Automation, 2013, 39(7): 85-88.
    [8]GUO Xin, NING Jian-min. Development of Full-automatic and Intelligent Scheduling and Loading System[J]. Journal of Mine Automation, 2012, 38(9): 9-12.
    [9]ZHANG Guo-ying, YANG Hai-chun. Discussion on Application of WSN in Vehicle Scheduling System of Open-cut[J]. Journal of Mine Automation, 2010, 36(6): 31-34.
    [10]SUN Shi-cui, DING En-jie, XU Xiu. Research of Resource Management and Task Scheduling Based on Mine Safety Grid[J]. Journal of Mine Automation, 2007, 33(6): 1-4.
  • Cited by

    Periodical cited type(12)

    1. 李梅,张鹏鹏,李元琛. AI赋能智能矿山:应用场景及未来展望. 煤炭经济研究. 2025(02): 161-169 .
    2. 张美晨,张凯,赵丽娟,史百胜,王宇洋. 煤岩识别及采煤机自适应控制技术研究进展. 山西焦煤科技. 2023(12): 4-10 .
    3. 张强,张润鑫,刘峻铭,王聪,张赫哲,田莹. 煤矿智能化开采煤岩识别技术综述. 煤炭科学技术. 2022(02): 1-26 .
    4. 李彦明,孙利海. 基于多源异构信息耦合的煤岩界面识别技术研究. 矿业安全与环保. 2022(05): 6-10 .
    5. 陈家璘,周正,冯伟东,贺易,李静茹,赵世文. 一种无线传感器网络节点的故障检测算法. 计算技术与自动化. 2021(01): 38-42 .
    6. 窦国贤,高杨. 一种改进的电网信息系统自动化故障融合监测技术. 计算技术与自动化. 2020(01): 34-38 .
    7. 赵晓群,曹磊,张伍. 应用模块化+大数据处理技术提高计量新装接线率. 电子测量技术. 2020(05): 150-155 .
    8. 张林锋,田慕琴,宋建成,贺颖,冯君玲,刘西青. 基于多源数据融合的掘进机截割岩壁硬度识别方法. 振动与冲击. 2020(13): 7-15 .
    9. 窦国贤,高杨. 基于小波分析方法检测电网信息故障的研究. 计算机测量与控制. 2020(09): 38-41+57 .
    10. 王思. 基于多传感器的运动员训练信息融合分析系统设计. 计算技术与自动化. 2020(03): 140-146 .
    11. 王俊成,杜晓坤. 基于小波包分解和模糊神经网络的煤岩界面识别. 科技经济导刊. 2019(04): 48+36 .
    12. 刘忠超,刘勇军. 煤岩识别现状分析与发展方向. 南阳理工学院学报. 2018(04): 26-30 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (1572) PDF downloads (76) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return