LI Zaiyou, SUN Yanbin, WANG Xiaoguang, et al. Unmanned truck transportation scheduling in open-pit mines based on improved tunicate swarm algorithm[J]. Journal of Mine Automation,2022,48(6):87-94, 127. DOI: 10.13272/j.issn.1671-251x.17929
Citation: LI Zaiyou, SUN Yanbin, WANG Xiaoguang, et al. Unmanned truck transportation scheduling in open-pit mines based on improved tunicate swarm algorithm[J]. Journal of Mine Automation,2022,48(6):87-94, 127. DOI: 10.13272/j.issn.1671-251x.17929

Unmanned truck transportation scheduling in open-pit mines based on improved tunicate swarm algorithm

More Information
  • Received Date: April 11, 2022
  • Revised Date: June 19, 2022
  • Available Online: June 27, 2022
  • In order to solve the problem of unmanned truck transportation scheduling in open-pit mines, the minimum sum of fuel cost, fixed start-up cost, breakdown maintenance cost, and network base station construction and maintenance cost are taken as the objective functions. The mining amount of mining station, crushing amount of crushing station, truck number and truck transportation workload are taken as the constraint conditions. The optimization model of unmanned truck transportation scheduling in open-pit mines is established. To solve the problem of imbalance between global exploration and local mining ability in the tunicate swarm algorithm, an improved tunicate swarm algorithm (ITSA) based on Singer mapping and adaptive updating mechanism of parameter position is proposed. And it is applied to solve the optimization model of unmanned truck transportation scheduling in open-pit mines. Singer mapping is introduced to enhance the distribution of the initial tunicate swarm in the solution space and accelerate the compression of the solution space, thus improving the convergence speed of the algorithm. Through the adaptive updating mechanism of parameter position, the positions of the tunicate and the optimal tunicate are adjusted to increase the search range of the solution space. Therefore, the algorithm jumps out of the local optimization. The simulation results show that ITSA has better convergence precision, convergence speed and stability compared with the four population intelligent optimization algorithms of grey wolf optimization algorithm (GWO), whale optimization algorithm (WOA), atom search optimization algorithm (ASO) and tunicate swarm algorithm (TSA). In the unimodal benchmark function, the evaluation indexes of ITSA are far better than those of the other four algorithms, which shows that ITSA has better local mining capacity. In the multi-peak benchmark function, the evaluation indexes of ITSA show better optimization performance, which indicates that ITSA has better global exploration performance. The practical application scenario verification shows that ITSA has faster convergence speed and higher convergence precision when used for solving the unmanned truck transportation scheduling optimization model. And ITSA reduces the truck transportation cost and transportation distance.
  • [1]
    付恩三,刘光伟,邸帅,等. 露天矿山无人驾驶技术及系统架构研究[J]. 煤炭工程,2022,54(1):34-39.

    FU Ensan,LIU Guangwei,DI Shuai,et al. Unmanned driving technology and system architecture in open-pit mines[J]. Coal Engineering,2022,54(1):34-39.
    [2]
    常永刚. 露天矿运输系统优化与卡车调度问题研究[D]. 沈阳: 沈阳工业大学, 2018.

    CHANG Yonggang. Study on optimization of transportation system and truck scheduling in the open-pit[D]. Shenyang: Shenyang University of Technology, 2018.
    [3]
    王富民,贺昌斌. 露天矿卡车无人驾驶技术的现状与展望[J]. 露天采矿技术,2021,36(3):45-47.

    WANG Fumin,HE Changbin. Status and outlook of autonomous driving technology for trucks in open-pit mine[J]. Opencast Mining Technology,2021,36(3):45-47.
    [4]
    马琳. 露天矿卡车调度优化研究[D]. 天津: 河北工业大学, 2015.

    MA Lin. Optimization of truck dispating in open pit mine[D]. Tianjin: Hebei University of Technology, 2015.
    [5]
    莫明慧. 露天矿无人驾驶卡车多目标车流分配调度算法及应用[D]. 西安: 西安建筑科技大学, 2020.

    MO Minghui. Application of multi-objective traffic assignment and scheduling algorithm for driverless truck in open pit mine[D]. Xi'an: Xi'an University of Architecture and Technology, 2020.
    [6]
    武讲,郑群飞. 哈尔乌素露天矿无人驾驶方案研究[J]. 金属矿山,2021,50(2):167-172.

    WU Jiang,ZHENG Qunfei. Feasibility study of driverless system in Harwusu Open-pit Coal Mine[J]. Metal Mine,2021,50(2):167-172.
    [7]
    王金亮. 基于遗传算法的多车型露天矿卡车调度模型研究[J]. 现代矿业,2021,37(3):35-39,44. DOI: 10.3969/j.issn.1674-6082.2021.03.009

    WANG Jinliang. Model research of multi-type truck scheduling based on GA[J]. Modern Mining,2021,37(3):35-39,44. DOI: 10.3969/j.issn.1674-6082.2021.03.009
    [8]
    张明,顾清华,李发本,等. 基于多目标遗传算法的露天矿卡车调度优化研究[J]. 金属矿山,2019,48(6):157-162.

    ZHANG Ming,GU Qinghua,LI Faben,et al. Research of open-pit mine truck dispatching optimization based on multi-objective genetic algorithm[J]. Metal Mine,2019,48(6):157-162.
    [9]
    张超,江松. 基于改进蚁群算法的露天矿无人驾驶卡车智能调度[J]. 安徽工业大学学报(自然科学版),2020,37(3):267-275. DOI: 10.3969/j.issn.1671-7872.2020.03.012

    ZHANG Chao,JIANG Song. Intelligent dispatching of unmanned truck in open pit mine based on improved ant colony algorithm[J]. Journal of Anhui University of Technology(Natural Science),2020,37(3):267-275. DOI: 10.3969/j.issn.1671-7872.2020.03.012
    [10]
    王俊栋,李宁,吴亚辉,等. 基于改进DCW−QPSO算法的露天矿卡车调度优化方法[J]. 金属矿山,2019,48(12):156-162.

    WANG Jundong,LI Ning,WU Yahui,et al. Truck scheduling optimization in open pit mines based on improved DCW-QPSO algorithm[J]. Metal Mine,2019,48(12):156-162.
    [11]
    苏楷,门飞. 露天矿运输调度问题求解的自适应果蝇优化算法[J]. 金属矿山,2017,46(11):172-176. DOI: 10.3969/j.issn.1001-1250.2017.11.034

    SU Kai,MEN Fei. Adaptive fruit fly optimization algorithm for solving open-pit hauling dispatching optimization problem[J]. Metal Mine,2017,46(11):172-176. DOI: 10.3969/j.issn.1001-1250.2017.11.034
    [12]
    门飞,蒋欣. 求解露天矿低碳运输调度问题的改进灰狼优化算法[J]. 工矿自动化,2020,46(12):90-94.

    MEN Fei,JIANG Xin. Improved gray wolf optimization algorithm for solving low-carbon transportation scheduling problem in open-pit mines[J]. Industry and Mine Automation,2020,46(12):90-94.
    [13]
    彭程,隋晓梅,王辉俊. 用于求解露天矿运输问题的改进差分进化算法[J]. 工矿自动化,2018,44(4):104-108.

    PENG Cheng,SUI Xiaomei,WANG Huijun. Improved differential evolution algorithm for solving open-pit mine transportation problem[J]. Industry and Mine Automation,2018,44(4):104-108.
    [14]
    DEWI S K,UTAMA D M. A new hybrid whale optimization algorithm for green vehicle routing problem[J]. Systems Science & Control Engineering,2021,9(1):61-72.
    [15]
    ZHAO Weiguo,WANG Liying,ZHANG Zhenxing. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem[J]. Knowledge-Based Systems,2019,163:283-304. DOI: 10.1016/j.knosys.2018.08.030
    [16]
    KAUR S,AWASTHI L K,SANGAL A L,et al. Tunicate swarm algorithm:a new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence,2020,90:103541. DOI: 10.1016/j.engappai.2020.103541
    [17]
    LI Lingling,LIU Zhifeng,TSENG M L,et al. Improved tunicate swarm algorithm:solving the dynamic economic emission dispatch problems[J]. Applied Soft Computing,2021,108:107504. DOI: 10.1016/j.asoc.2021.107504
    [18]
    SHARMA A,DASGOTRA A,TIWARI S K,et al. Parameter extraction of photovoltaic module using tunicate swarm algorithm[J]. Electronics,2021,10(8):878. DOI: 10.3390/electronics10080878
    [19]
    FETOUH T,ELSAYED A M. Optimal control and operation of fully automated distribution networks using improved tunicate swarm intelligent algorithm[J]. IEEE Access,2020,8:129689-129708. DOI: 10.1109/ACCESS.2020.3009113
    [20]
    YADAV K,ALSHUDUKHI J S,DHIMAN G,et al. iTSA:an improved tunicate swarm algorithm for defensive resource assignment problem[J]. Soft Computing,2022,26(10):4929-4937. DOI: 10.1007/s00500-022-06979-z
    [21]
    刘威, 郭直清, 姜丰, 等. 协同围攻策略改进的灰狼算法及其PID参数优化[J/OL]. 计算机科学与探索: 1-16 [2022-04-09]. http://202.199.233.17:8000/rwt/CNKI/http/NNYHGLUDN3WXTLUPMW4A/kcms/detail/11.5602.tp.20210714.1741.002.html.

    LIU Wei, GUO Zhiqing, JIANG Feng, et al. Improved grey wolf optimizer based on cooperative attack strategy and its PID parameter optimization[J/OL]. Journal of Frontiers of Computer Science and Technology: 1-16[2022-04-09]. http://202.199.233.17:8000/rwt/CNKI/http/NNYHGLUDN3WXTLUPMW4A/kcms/detail/11.5602.tp.20210714.1741.002.html.
    [22]
    KHISHE M,MOSAVI M R. Chimp optimization algorithm[J]. Expert Systems with Applications,2020,149:113338. DOI: 10.1016/j.eswa.2020.113338
  • Related Articles

    [1]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [2]CUI Lizhen, XU Fanfei, WANG Qiaoli, GAO Lili. Underground adaptive positioning algorithm based on PSO-BP neural network[J]. Journal of Mine Automation, 2018, 44(2): 74-79. DOI: 10.13272/j.issn.1671-251x.2017090028
    [3]JIANG Lei, YANG Liuming, WU Fangda, HAN Huijie, ZHOU Xue. Underground positioning method based on GMapping algorithm and fingerprint map constructio[J]. Journal of Mine Automation, 2017, 43(9): 96-101. DOI: 10.13272/j.issn.1671-251x.2017.09.017
    [4]JIANG Xiu-zhu, XU Zhao, LI Xiang-dong, YUAN Wei-chen, FENG Dong-qin. Research of real-time adaptive scheduling algorithm for across segments delay in EPA[J]. Journal of Mine Automation, 2013, 39(10): 35-39. DOI: 10.7526/j.issn.1671-251X.2013.10.010
    [5]NIU Chao, YAO Yu-mei. Research of Adaptive Backstepping Control of Crane Hoisting System[J]. Journal of Mine Automation, 2011, 37(9): 67-71.
    [6]LI Jun, WANG Jin-hai. Remote Update System of ARM Software Based on TFTP[J]. Journal of Mine Automation, 2010, 36(7): 22-25.
    [7]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
    [8]LI Lu, MA Shao-yi. Construction of Mine-map Graph Correction System Based on MapX[J]. Journal of Mine Automation, 2009, 35(11): 115-116.
    [9]XU Jian-jun, SHI Yi-qiao. Design of Main Station of Mine-used Tracking and Position System for Personnel Based on MapInfo[J]. Journal of Mine Automation, 2008, 34(1): 82-84.
  • Cited by

    Periodical cited type(10)

    1. 常城,舒志兵,陈守林,张之裕. 基于UWB的智能巡检机器人定位系统研究. 机床与液压. 2024(09): 22-29 .
    2. 吕猛. 基于无线传感技术的煤矿机械设备运行状态监测系统. 能源与环保. 2023(03): 227-232 .
    3. 杨帆,柯政亭,翁蔚,江云辉,方毅,张聪伟. 基于便携式智能传感技术的配电设备监测及预警研究. 计算技术与自动化. 2022(03): 32-36 .
    4. 温圣军,韩春晓,袁刚,丰苏. 主动式通信网络性能自动监测方法. 自动化技术与应用. 2022(10): 142-145 .
    5. 孙彦景,霍羽,陈岩,王博文,周家思,张晓光. 矿山动态协同作业场景无线通信关键技术. 煤炭学报. 2021(01): 321-332 .
    6. 周德胜. 基于LoRa的矿用无线通信系统设计. 煤矿安全. 2021(04): 170-173 .
    7. 赵驭阳. 基于DAG-SVM的煤矿井下输送装置故障在线检测. 机床与液压. 2021(10): 189-194 .
    8. 贾荣谷. 基于无线传感网络的边坡位移预警系统设计. 电子设计工程. 2020(10): 97-101 .
    9. 杨俊秋,王艳芬,王倩玉,陈晓晶,刘丰祯,孙彦景. 基于802.11ah井下监测传感网的RAW重分组研究. 工矿自动化. 2020(05): 69-75 . 本站查看
    10. 唐振中,郑思,张静. IEEE 802.11ah关键技术分析与应用. 科技创新与应用. 2019(34): 146-147 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1106) PDF downloads (66) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return