XUE Guanghui, LI Yuan, ZHANG Yunfei. Research on pose measurement system of cantilever roadheader based on laser target tracking[J]. Journal of Mine Automation,2022,48(7):13-21. DOI: 10.13272/j.issn.1671-251x.17967
Citation: XUE Guanghui, LI Yuan, ZHANG Yunfei. Research on pose measurement system of cantilever roadheader based on laser target tracking[J]. Journal of Mine Automation,2022,48(7):13-21. DOI: 10.13272/j.issn.1671-251x.17967

Research on pose measurement system of cantilever roadheader based on laser target tracking

More Information
  • Received Date: May 22, 2022
  • Revised Date: July 13, 2022
  • Available Online: August 08, 2022
  • The accurate and rapid measurement of the roadheader pose is the premise and foundation of intelligent heading in coal mine roadway. The existing cantilever roadheader pose measurement has the problem of non-absolute pose measurement, low measurement precision, complex arrangement, or only a few pose parameters being measured. The measurement can not meet the intelligent heading requirement. In order to solve the above problems, based on the pose measurement method of the cantilever roadheader based on laser target tracking, a pose measurement system of cantilever roadheader based on laser target tracking is designed. The system consists of a laser tracking device and a laser target. The laser tracking device is arranged behind the roadway, emits laser to the laser target arranged on the cantilever roadheader fuselage, and tracks the movement of the laser target. By solving the conversion matrix between coordinate systems such as laser tracking device, laser target, roadheader and roadway, six absolute pose parameters such as heading direction position, offset, height, deviation angle, pitch angle and roll angle can be measured. The full parameter real-time measurement of absolute pose of cantilever roadheader in roadway coordinate system is realized. The error influence factors of the system are analyzed, and the error distribution law is obtained by simulation. With the increase of heading distance, the pose measurement error of roadheader changes within a certain range. The measurement errors of offset and height increase linearly. Within the measurement range of 5-80 m, the measurement errors of the deviation angle, pitch angle and roll angle of the roadheader are less than 1.4, 1, 0.03° respectively. The measurement error of the heading direction position is less than 5 mm, and the measurement errors of offset and height are less than 20 mm. Using the crawler robot chassis, an experimental system for pose measurement is built. The pose measurement experiment is carried out in the simulated roadway. The results show that the measurement errors of the heading direction position, offset and height are less than 5 mm. The measurement error of the deviation angle is less than 1°. The measurement error of the pitch angle is less than 0.6°. And the measurement error of the roll angle can be ignored. The results are consistent with the simulation results, which proves the reliability of the system.
  • [1]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [2]
    刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15. DOI: 10.13225/j.cnki.jccs.2021.0042

    LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15. DOI: 10.13225/j.cnki.jccs.2021.0042
    [3]
    张国喜. 悬臂式掘进机惯性测量系统的改进与试验[J]. 江西煤炭科技,2021(2):238-240. DOI: 10.3969/j.issn.1006-2572.2021.02.080

    ZHANG Guoxi. Transformation and experiment on inertial measurement system in cantilever roadheader[J]. Jiangxi Coal Science & Technology,2021(2):238-240. DOI: 10.3969/j.issn.1006-2572.2021.02.080
    [4]
    张超. 悬臂式掘进机双目视觉与捷联惯导组合定位技术研究[D]. 西安: 西安科技大学, 2020.

    ZHANG Chao. Research on integrated positioning technology of boom-type roadheader based on binocular vision and strapdown inertial navigation[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [5]
    张旭辉,刘博兴,张超,等. 掘进机全站仪与捷联惯导组合定位方法[J]. 工矿自动化,2020,46(9):1-7.

    ZHANG Xuhui,LIU Boxing,ZHANG Chao,et al. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Industry and Mine Automation,2020,46(9):1-7.
    [6]
    原世进. 基于iGPS的悬臂式掘进机位姿测定系统研究[J]. 煤矿现代化,2018(2):94-95, 98. DOI: 10.3969/j.issn.1009-0797.2018.02.037

    YUAN Shijin. Research on the measuring system to heading cantilever's position and posture within iGPS[J]. Coal Mine Modernization,2018(2):94-95, 98. DOI: 10.3969/j.issn.1009-0797.2018.02.037
    [7]
    段笑蔚. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 机械管理开发,2020,35(12):234-235, 267. DOI: 10.16525/j.cnki.cn14-1134/th.2020.12.100

    DUAN Xiaowei. Research on self-positioning orientation method of roadheader based on ultra wide band technology[J]. Mechanical Management and Development,2020,35(12):234-235, 267. DOI: 10.16525/j.cnki.cn14-1134/th.2020.12.100
    [8]
    周玲玲,董海波,杜雨馨. 基于双激光标靶图像识别的掘进机位姿检测方法[J]. 激光与光电子学进展,2017,54(4):186-192.

    ZHOU Lingling,DONG Haibo,DU Yuxin. Method of roadheader position detection based on image recognition of double laser targets[J]. Laser & Optoelectronics Progress,2017,54(4):186-192.
    [9]
    吴淼,贾文浩,华伟,等. 基于空间交汇测量技术的悬臂式掘进机位姿自主测量方法[J]. 煤炭学报,2015,40(11):2596-2602.

    WU Miao,JIA Wenhao,HUA Wei,et al. Autonomous measurement of position and attitude of boom-type roadheader based on space intersection measurement[J]. Journal of China Coal Society,2015,40(11):2596-2602.
    [10]
    马一心,范百兴,黄剑. 多台激光跟踪仪联合动态位姿测量精度评定方法研究[J]. 测绘工程,2021,30(2):55-59.

    MA Yixin,FAN Baixing,HUANG Jian. Research on the evaluation method of the accuracy of combined dynamic position and attitude measurement of multiple laser trackers[J]. Engineering of Surveying and Mapping,2021,30(2):55-59.
    [11]
    邓国华. 基于激光导向器的悬臂式掘进机位置姿态自动测定方法[J]. 工矿自动化,2009,35(9):20-23.

    DENG Guohua. An automatic detecting method for position and posture of boom-type roadheader based on laser guide[J]. Industry and Mine Automation,2009,35(9):20-23.
    [12]
    LI Jianguo,ZHAN Kai. Intelligent mining technology for an underground metal mine based on unmanned equipment[J]. Engineering,2018(4):381-391.
    [13]
    DU Yuxin, TONG Minming, LIU Ting, et al. Visual measurement system for roadheaders pose detection in mines [J]. Optical Engineering, 2016, 55(10). DOI: 10.1117/1.OE.55.10.104107.
    [14]
    张超,张旭辉,杜昱阳,等. 基于双目视觉的悬臂式掘进机位姿测量技术研究[J]. 煤炭科学技术,2021,49(11):225-235. DOI: 10.13199/j.cnki.cst.2021.11.029

    ZHANG Chao,ZHANG Xuhui,DU Yuyang. Measuring technique of cantilever roadheader position based on binocular stereo vision[J]. Coal Science and Technology,2021,49(11):225-235. DOI: 10.13199/j.cnki.cst.2021.11.029
    [15]
    薛光辉,张云飞,候称心,等. 基于激光靶向跟踪的掘进机位姿测量方法[J]. 矿业科学学报,2020,5(4):416-422. DOI: 10.19606/j.cnki.jmst.2020.04.008

    XUE Guanghui,ZHANG Yunfei,HOU Chenxin,et al. Measurement of roadheader position and posture based on laser target tracking[J]. Journal of Mining Science and Technology,2020,5(4):416-422. DOI: 10.19606/j.cnki.jmst.2020.04.008
    [16]
    薛光辉,张云飞,候称心,等. 基于激光靶向扫描的掘进机位姿测量方法[J]. 煤炭科学技术,2020,48(11):19-25. DOI: 10.13199/j.cnki.cst.2020.11.003

    XUE Guanghui,ZHANG Yunfei,HOU Chenxin,et al. Measurement of roadheader position and posture based on orientation laser scanning[J]. Coal Science and Technology,2020,48(11):19-25. DOI: 10.13199/j.cnki.cst.2020.11.003
    [17]
    ZHU Jun,XU Zhengjie,FU Deli,et al. Laser spot center detection and comparison test[J]. Photonic Sensors,2019,9(1):49-52. DOI: 10.1007/s13320-018-0432-x
    [18]
    张鹏程,刘瑾,杨海马,等. 基于PSD的非均匀激光光斑中心定位研究[J]. 激光与红外,2020,50(8):941-947. DOI: 10.3969/j.issn.1001-5078.2020.08.007

    ZHANG Pengcheng,LIU Jin,YANG Haima,et al. Research on center positioning of non-uniform laser spot based on PSD[J]. Laser & Infrared,2020,50(8):941-947. DOI: 10.3969/j.issn.1001-5078.2020.08.007
  • Related Articles

    [1]SHEN Qiuyan. Vibration monitoring and analysis of ranging target based on laser self-mixing interference[J]. Journal of Mine Automation, 2024, 50(S1): 161-164,178.
    [2]HE Yijing, YANG Wei. Autonomous pose estimation of underground disaster rescue drones based on visual and laser fusion[J]. Journal of Mine Automation, 2024, 50(4): 94-102. DOI: 10.13272/j.issn.1671-251x.2023080124
    [3]NIU Weifeng, ZONG Liangliang, WU Feng, TU Shiyu, AI Lingyun, HU Wenbin, GAN Weibing. Two-dimensional laser scanner based coal mine shaft guide deformation detection device[J]. Journal of Mine Automation, 2021, 47(3): 101-104. DOI: 10.13272/j.issn.1671-251x.2021010018
    [4]YE Meitu, LIANG Yiwei, WANG Kun. Research on laser measuring device of surface displacements of mine roadway[J]. Journal of Mine Automation, 2018, 44(7): 84-87. DOI: 10.13272/j.issn.1671-251x.2017120086
    [5]CHEN Shun, ZHENG Nanshan, QI Yun, BAN Meng. Application research on Offset Tracking technology in monitoring oflarge surface deformation in coal mine subsidence area[J]. Journal of Mine Automation, 2017, 43(6): 32-37. DOI: 10.13272/j.issn.1671-251x.2017.06.008
    [6]WANG Hai-quan, LIAO Lei, LI Hong-jun, WANG Dong-yu. Design of real-time control system of DC motor based on xPC Target[J]. Journal of Mine Automation, 2013, 39(5): 76-79.
    [7]ZHANG Li-yong, JIANG Pei-gang, FANG Su-la. Design of Laser Coal Stocktaking System Based on Embedded ARM and GPRS[J]. Journal of Mine Automation, 2010, 36(12): 72-75.
    [8]LI Jin-liang, SUN You-xia, BAO Ji-hua, ZHANG Yuan, JIANG Xue. Research of Target Tracking Control of Rescue Robot[J]. Journal of Mine Automation, 2009, 35(12): 22-25.
    [9]DENG Guo-hua. An Automatic Detecting Method for Position and Posture of Boom-type Roadheader Based on Laser Guide[J]. Journal of Mine Automation, 2009, 35(9): 20-23.
    [10]YAO Wan-ye, LONG Yang, ZHANG Dong-feng, YOU Yong-hua. Flight Time Measurement System of Laser Ranging Based on TDC-GP2[J]. Journal of Mine Automation, 2008, 34(6): 47-49.
  • Cited by

    Periodical cited type(6)

    1. 马宏伟,孙思雅,王川伟,毛清华,薛旭升,刘鹏,田海波,王鹏,张烨,聂珍,马柯翔,郭逸风,张恒,王赛赛,李烺,苏浩,崔闻达,成佳帅,喻祖坤. 论“掘进就是掘模型”的学术思想. 煤炭学报. 2025(01): 661-675 .
    2. 郑林超. 掘进机截齿截割的受力分析及仿真. 机械管理开发. 2024(02): 79-80+83 .
    3. 刘清,刘军锋. 基于UWB的综采工作面推进度测量系统. 工矿自动化. 2024(04): 33-40 . 本站查看
    4. 万祖保. 基于物联网的矿用掘进机位姿实时监测系统研究. 矿业装备. 2024(05): 150-152 .
    5. 郑瑞东,韩燮,高波. 悬臂式掘进机位姿测量方法研究. 中北大学学报(自然科学版). 2024(06): 823-831 .
    6. 王俊秀. UWB测距技术在煤矿井下的应用. 煤矿机械. 2023(09): 145-147 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1049) PDF downloads (50) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return