LIU Qing, LIU Junfeng. UWB based measurement system for pushing progress of fully mechanized working face[J]. Journal of Mine Automation,2024,50(4):33-40. DOI: 10.13272/j.issn.1671-251x.2023120024
Citation: LIU Qing, LIU Junfeng. UWB based measurement system for pushing progress of fully mechanized working face[J]. Journal of Mine Automation,2024,50(4):33-40. DOI: 10.13272/j.issn.1671-251x.2023120024

UWB based measurement system for pushing progress of fully mechanized working face

More Information
  • Received Date: December 06, 2023
  • Revised Date: April 17, 2024
  • Available Online: May 09, 2024
  • A real-time measurement system for the pushing progress of fully mechanized working face based on UWB ranging technology is proposed to address the problems of existing measurement and calculation methods, such as time-consuming, labor-intensive, large cumulative errors, and inability to recalculate after sensor damage. The system adopts a combination of mining intrinsic safety distance measurement substation and distance measurement marker card, and achieves real-time measurement of the progress of roadway pushing in the fully mechanized working face through wireless communication. At the end of the fully mechanized working face, a distance measuring sub station is arranged on the hydraulic support, and a distance measuring mark card is hung at the fixed marking point of the mining roadway. The distance is measured through UWB wireless signal in the roadway. When the mining is about to reach the nearest distance measuring mark card position, the distance measuring mark card is removed. The subsequent distance measuring mark card is replaced to measure and calculate the progress of the roadway pushing, so as to continuously replace the measurement. Based on the coal mining technology, a limited amplitude median average filtering model is established based on the position of the shearer and the action of the hydraulic support. This model deeply integrates limited amplitude filtering, median filtering, and arithmetic mean filtering to eliminate invalid data with large measurement deviations caused by measurement and occlusion in massive data. At the same time, the maximum and minimum deviation data in the effective data are eliminated, further ensuring the accuracy and effectiveness of the measurement values obtained through arithmetic mean operation. The continuous measurement of the progress of the fully mechanized working face is achieved. The ground test results show that the maximum error of ranging substation 1 is 0.32 m, and the proportion of errors less than 0.2 m is 84.62%. The maximum error of distance measurement substation 2 is 0.48 m, and the proportion of errors less than 0.2 m is 76.92%. The industrial underground test results show that the difference between the daily average advance degree of the system and the measured data of the coal mine is 0.13 m. The result proves the feasibility of UWB ranging technology in underground roadway conditions and the accuracy of the pushing progress measurement model based on coal mining technology.
  • [1]
    刘正. 基于支架推移油缸行程的综采面推进距离算法研究[J]. 陕西煤炭,2022,41(5):113-117.

    LIU Zheng. Research on algorithm of advancing distance of fully mechanized mining face based on the support pushing cylinder stroke[J]. Shaanxi Coal,2022,41(5):113-117.
    [2]
    朱朋飞,郭龙真. 基于机器视觉的煤矿井下工作面推进度智能识别方法[J]. 煤矿机械,2023,44(8):200-203.

    ZHU Pengfei,GUO Longzhen. Intelligent recognition method of advancing degree of coal mine underground working face based on machine vision[J]. Coal Mine Machinery,2023,44(8):200-203.
    [3]
    翟新献,赵晓凡,郭钊洋,等. 综放开采上覆巨厚砾岩层变形垮落冲击相似模拟研究[J]. 采矿与安全工程学报,2023,40(5):1018-1030.

    ZHAI Xinxian,ZHAO Xiaofan,GUO Zhaoyang,et al. Similar simulation study on deformation and collapsing impact of overlying hugely-thick conglomerate stratum in longwall top-coal caving mining[J]. Journal of Mining & Safety Engineering,2023,40(5):1018-1030.
    [4]
    王朝引. 回采速度对厚煤层综采工作面冲击显现的影响[J]. 煤炭科学技术,2019,47(8):96-101.

    WANG Chaoyin. Effect of mining speed on bump manifestation of fully-mechanized mining face in deep and thick coal seam[J]. Coal Science and Technology,2019,47(8):96-101.
    [5]
    赵同彬,郭伟耀,韩飞,等. 工作面回采速度影响下煤层顶板能量积聚释放分析[J]. 煤炭科学技术,2018,46(10):37-44.

    ZHAO Tongbin,GUO Weiyao,HAN Fei,et al. Analysis on energy accumulation and release of roof under influence of mining speed[J]. Coal Science and Technology,2018,46(10):37-44.
    [6]
    刘金海,孙浩,田昭军,等. 煤矿冲击地压的推采速度效应及其动态调控[J]. 煤炭学报,2018,43(7):1858-1865.

    LIU Jinhai,SUN Hao,TIAN Zhaojun,et al. Effect of advance speed on rock burst in coal mines and its dynamic control method[J]. Journal of China Coal Society,2018,43(7):1858-1865.
    [7]
    李生鑫,孙珍平,刘春刚. 基于通风量与推进度的采空区自然发火数值模拟[J]. 煤矿安全,2020,51(9):196-200.

    LI Shengxin,SUN Zhenping,LIU Chungang. Numerical simulation of spontaneous combustion in goaf based on ventilation and advancing degree[J]. Safety in Coal Mines,2020,51(9):196-200.
    [8]
    曹拓拓,宣德全,范振. 易自燃煤层低推进度综放工作面采空区自燃防治技术[J]. 煤矿安全,2014,45(12):92-95.

    CAO Tuotuo,XUAN Dequan,FAN Zhen. Goaf spontaneous combustion control technology of mechanized face of spontaneous combustion coal seam with low advance degree[J]. Safety in Coal Mines,2014,45(12):92-95.
    [9]
    姜希印. 易自燃孤岛工作面安全推进速度研究[J]. 工矿自动化,2019,45(12):7-11.

    JIANG Xiyin. Research on safe advancing speed of spontaneous combustion isolated working face[J]. Industry and Mine Automation,2019,45(12):7-11.
    [10]
    季文博,齐庆新,李宏艳,等. 沙曲矿单一工作面推进度与瓦斯涌出量关系研究[J]. 煤炭工程,2012,44(12):95-98.

    JI Wenbo,QI Qingxin,LI Hongyan,et al. Study on relationship between advancing rate of single coal mining face and gas emission value in Shaqu Mine[J]. Coal Engineering,2012,44(12):95-98.
    [11]
    肖寒撼,李维光,华道友,等. 单一煤层采煤工作面瓦斯抽采量与推进度之间关系研究[J]. 中国煤炭,2018,44(3):140-142,146.

    XIAO Hanhan,LI Weiguang,HUA Daoyou,et al. Study on the relationship between advance rate and gas drainage volume of single coal seam work face[J]. China Coal,2018,44(3):140-142,146.
    [12]
    邓小明,邓志龙. 基于UWB技术的煤矿无线传感器网络设计研究[J]. 煤炭技术,2023,42(6):244-247.

    DENG Xiaoming,DENG Zhilong. Design and research of coal mine wireless sensor network based on UWB technology[J]. Coal Technology,2023,42(6):244-247.
    [13]
    薛光辉,李圆,张云飞. 基于激光靶向跟踪的悬臂式掘进机位姿测量系统研究[J]. 工矿自动化,2022,48(7):13-21.

    XUE Guanghui,LI Yuan,ZHANG Yunfei. Research on pose measurement system of cantilever roadheader based on laser target tracking[J]. Journal of Mine Automation,2022,48(7):13-21.
    [14]
    王俊秀. UWB测距技术在煤矿井下的应用[J]. 煤矿机械,2023,44(9):145-147.

    WANG Junxiu. Application of UWB ranging technology in underground coal mine[J]. Coal Mine Machinery,2023,44(9):145-147.
    [15]
    丁震,张雨晨. 煤矿井下粉尘浓度对UWB测距精度的影响研究[J]. 工矿自动化,2021,47(11):131-134.

    DING Zhen,ZHANG Yuchen. Research on the influence of coal mine dust concentration on UWB ranging precision[J]. Industry and Mine Automation,2021,47(11):131-134.
    [16]
    陈伟. 基于UWB技术的煤矿精确定位系统[J]. 煤矿机械,2023,44(5):177-180.

    CHEN Wei. Coal mine precise positioning system based on UWB technology[J]. Coal Mine Machinery,2023,44(5):177-180.
    [17]
    郭爱军. 基于UWB的PDOA与TOF煤矿井下联合定位方法[J]. 工矿自动化,2023,49(3):137-141.

    GUO Aijun. A joint positioning method of PDOA and TOF in coal mines based on UWB[J]. Journal of Mine Automation,2023,49(3):137-141.
    [18]
    郁露,唐超礼,黄友锐,等. 基于UWB和IMU的煤矿机器人紧组合定位方法研究[J]. 工矿自动化,2022,48(12):79-85.

    YU Lu,TANG Chaoli,HUANG Yourui,et al. Research on tightly combined positioning method of coal mine robot based on UWB and IMU[J]. Journal of Mine Automation,2022,48(12):79-85.
    [19]
    任昊誉,郭晨霞,杨瑞峰. 卡尔曼滤波提高UWB测距精度研究[J]. 电子测量技术,2021,44(18):111-115.

    REN Haoyu,GUO Chenxia,YANG Ruifeng. Research on improving UWB ranging accuracy by Kalman filter[J]. Electronic Measurement Technology,2021,44(18):111-115.
    [20]
    泰勒. 数字滤波器原理及应用[M]. 北京:国防工业出版社,2013.

    TAYLOR F J. The principle and application of digital filter[M]. Beijing:National Defence Industry Press,2013.
    [21]
    唐丽均,吴畏,刘世森. 基于灰色预测模型的井下精确人员定位方法[J]. 工矿自动化,2021,47(8):128-132.

    TANG Lijun,WU Wei,LIU Shisen. Precise personnel positioning method in underground mine based on grey prediction model[J]. Industry and Mine Automation,2021,47(8):128-132.
    [22]
    张倩. 基于改进伪中值滤波和非局部均值滤波的红外图像滤波方法[J]. 工矿自动化,2014,40(12):57-60.

    ZHANG Qian. A filtering method for infrared image based on improved pseudo median filtering and non-local means filtering[J]. Industry and Mine Automation,2014,40(12):57-60.
  • Related Articles

    [1]LUO Yan-lei, ZHU Zheng-long, CHEN Jun-wei, QIU Xue, LI Yua. Design of Embedded Control System of Position of Fluid Equipment Based on Single-chip Microcomputer and DSP[J]. Journal of Mine Automation, 2010, 36(3): 29-31.
    [2]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [3]DONG Yun-hua, ZHENG Xian-feng. Design of Remote Monitoring and Control System for Coal Mine Safety Based on DSP[J]. Journal of Mine Automation, 2009, 35(6): 94-96.
    [4]OU Wei-bin, LI Jun-sheng. Design of Vector Control System of Asynchronous Motor Based on DSP and Its Simulatio[J]. Journal of Mine Automation, 2009, 35(6): 39-42.
    [5]TAN Guo-jun~(, 2), ZHANG Xu-long~(, 2). Design of Frequency Conversion Speed Regulation System with SVPWM for Asynchronous Motor Based on DSP[J]. Journal of Mine Automation, 2009, 35(2): 19-22.
    [6]JI Xuan-de, WANG Yu-ya. SVPWM Technology of Switch Mode Determined by Hardware Based on DSP[J]. Journal of Mine Automation, 2008, 34(4): 30-32.
    [7]WANG Li-hua~, HAN Jing-dong~, SHAO Yu-qin~, MENG Xiu-jin~. Design of 4~20 mA Current Loop Based on DSP[J]. Journal of Mine Automation, 2008, 34(2): 121-123.
    [8]JIANG Jian-ming, WANG Zheng-hong. Design of Mine Methane Sensor Based on DSP[J]. Journal of Mine Automation, 2005, 31(4): 4-5.
    [9]WANG Si-qi~, YAO Shan-hua~. Application Research of Mine Communication System Based on DSP Technology[J]. Journal of Mine Automation, 2004, 30(5): 17-19.
    [10]HUANG Ping, ZHANG Sheng. Realization of Information Transmission and Packet Switching Based on DSP in ISDN of Coal Mine Underground[J]. Journal of Mine Automation, 2002, 28(4): 20-22.
  • Cited by

    Periodical cited type(44)

    1. 马宏伟,薛旭升,毛清华,齐爱玲,王鹏,聂珍,张旭辉,曹现刚,赵英杰,郭逸风. 论“采煤就是采数据”的学术思想. 煤炭科学技术. 2025(01): 272-283 .
    2. 朱懋. 采煤机重载工况下转矩自动化补偿控制方法的研究. 机械管理开发. 2024(06): 323-325 .
    3. 张超. 基于模块化总线技术的采煤机自动监控系统设计. 矿业装备. 2024(12): 178-180 .
    4. 管政. 模糊PID电液控制对采煤机姿态调整的效果分析. 机械管理开发. 2023(08): 29-30+33 .
    5. 陈浩锐. 基于PLC的掘进机截割控制系统研究. 机械管理开发. 2023(08): 200-201+204 .
    6. 李春华,孙晓,宁权. 智能化采煤工作面采煤机自动监控系统的设计与应用. 山东煤炭科技. 2023(10): 87-90 .
    7. 李乾. 电驱动采煤机控制系统设计与实现. 机械研究与应用. 2023(05): 164-167 .
    8. 张宇杰. 采煤机与刮板输送机联动运行控制技术的应用研究. 机械管理开发. 2023(11): 284-286 .
    9. 赵晓璐. 采煤机运行状态监控系统设计及应用分析. 西部探矿工程. 2023(12): 162-164 .
    10. 刘晓鹏. 基于PLC的采煤机智能控制系统设计. 机械管理开发. 2022(02): 230-232 .
    11. 常映辉. 采煤机自动化自整定控制系统的设计及效果分析. 现代工业经济和信息化. 2022(08): 29-30+56 .
    12. 叶竹刚. 适用于自动化工作面的采煤机控制系统研究. 机械管理开发. 2022(12): 258-259+262 .
    13. 魏勇. 电牵引采煤机电控系统的优化设计与改造. 机电工程技术. 2021(01): 197-199 .
    14. 李春庆. 突变工况下采煤机机电控制优化. 机械管理开发. 2021(01): 101-103 .
    15. 韵凯. 采煤机记忆截割控制系统的研究与设计. 机械管理开发. 2021(06): 245-247 .
    16. 许连丙. 基于多传感器信息融合的采煤机状态监测系统设计. 自动化应用. 2021(04): 126-127+130 .
    17. 贺新星. 基于智能自动化的采煤机协同控制系统设计. 中国新技术新产品. 2021(11): 5-8 .
    18. 王振东. 采煤机智能控制系统的优化研究. 机械管理开发. 2021(08): 271-272 .
    19. 蔡德程,陈缤,关欣,李郝林. 机床热特性优化研究综述. 上海理工大学学报. 2021(05): 443-451 .
    20. 李强. 基于PLC的采煤机运行监控系统设计. 机电工程技术. 2020(01): 36-37 .
    21. 张旭辉,潘格格,张雨萌,樊红卫,毛清华,车万里,薛旭升,王川伟,赵友军. 采掘装备绿色设计与评价技术研究. 工矿自动化. 2020(02): 23-28+49 . 本站查看
    22. 郭帅. 机械化采煤中电气自动化的应用. 当代化工研究. 2020(04): 70-71 .
    23. 闫珂. 提高变频器驱动型提升机运行稳定性的策略研究. 机械管理开发. 2020(03): 58-60 .
    24. 杨健,李小辉. 掘进工作面远程视频监控控制系统设计. 中国石油和化工标准与质量. 2020(04): 220-221 .
    25. 王玮. 矿井综采工作面智能综采控制系统研究. 机电工程技术. 2020(04): 122-123+186 .
    26. 淮文军,王明芳. 基于DSP和PLC的电牵引采煤机电控系统优化设计. 煤矿机械. 2020(05): 206-208 .
    27. 兰天安. 煤矿采煤机控制系统设计研究. 能源与环保. 2020(05): 113-115+126 .
    28. 刘章敏. 煤矿综采工作面智能监控系统设计. 机电工程技术. 2020(05): 106-107+126 .
    29. 周展,赵亦辉,刘庚,蒋峰. 基于ACS800变频控制技术的采煤机变频调速系统. 煤矿机电. 2020(03): 16-19 .
    30. 付欣睿. 煤矿电牵引采煤机自动控制系统设计. 机械管理开发. 2020(10): 249-250+265 .
    31. 张耀明. 自动化工作面电牵引采煤机控制系统优化设. 煤炭科技. 2020(05): 36-38 .
    32. 王振宇. 采煤机信息系统的设计与实现. 机械管理开发. 2020(11): 223-224+254 .
    33. 曹连民,孙士娇,李建楠,吕玉廷. 煤矿工作面采煤机虚拟仿真实验教学研究. 实验技术与管理. 2019(02): 198-203 .
    34. 樊大鹏. 以多传感器为基础的电牵引采煤机监测监控系统探析. 机电工程技术. 2019(01): 158-160 .
    35. 杨成喜. 电牵引采煤机调高系统的操作及维护探讨. 机电工程技术. 2019(01): 155-157 .
    36. 刘春亮. 交流变频调速采煤机恒功率自动控制系统研究. 机电工程技术. 2019(04): 49-50+139 .
    37. 韩冰. 基于PLC的采煤机远程监控系统设计. 化学工程与装备. 2019(11): 173-174 .
    38. 张旭辉,谢亚洲. 基于DSP的悬臂式掘进机控制系统设计. 煤炭工程. 2019(12): 172-176 .
    39. 薛瑞梓. 煤矿采煤机自动化控制系统的研究和设计. 机电工程技术. 2019(12): 67-69 .
    40. 刘福平. 电牵引采煤机电控系统的研究与改进. 机械管理开发. 2018(06): 204-205+230 .
    41. 许刚. 多传感器下的电牵引采煤机综合监测系统分析. 煤矿机械. 2018(02): 55-57 .
    42. 赵友军,赵亦辉,张旭辉. 采煤机数字化技术发展及展望. 重型机械. 2018(04): 29-34 .
    43. 安全林. 大采高工作面采煤自动化在阳煤一矿的应用与探讨. 能源技术与管理. 2017(03): 174-175 .
    44. 李玉华,杨传常,闫业臣,刘广民. 采煤机电缆牵引拉力过载保护装置. 工矿自动化. 2017(12): 11-15 . 本站查看

    Other cited types(10)

Catalog

    LIU Junfeng

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (200) PDF downloads (53) Cited by(54)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return