CUI Lizhen, XU Fanfei, WANG Qiaoli, GAO Lili. Underground adaptive positioning algorithm based on PSO-BP neural network[J]. Journal of Mine Automation, 2018, 44(2): 74-79. DOI: 10.13272/j.issn.1671-251x.2017090028
Citation: CUI Lizhen, XU Fanfei, WANG Qiaoli, GAO Lili. Underground adaptive positioning algorithm based on PSO-BP neural network[J]. Journal of Mine Automation, 2018, 44(2): 74-79. DOI: 10.13272/j.issn.1671-251x.2017090028

Underground adaptive positioning algorithm based on PSO-BP neural network

More Information
  • A kind of underground adaptive positioning algorithm based on PSO-BP neural network was proposed. In view of the problem that traditional positioning algorithm based on ranging model is sensitive to coal mine environment disturbance and ranging error is large, a fingerprint matching positioning model is selected for positioning. In view of the problem that strong time-varying nature of coal mine environment is easy to increase matching error between the fingerprint information collected in real time and the static fingerprint database information established in offline phase, the beacon node is used as calibration node to better reflect the condition of reference point changes with environment, and avoid adding additional calibration nodes. The dynamic compensation method is used to correct the fingerprint data of the target node in real time without increasing the hardware cost, which solves the problem of poor adaptation of the fingerprint matching positioning model. At the matching positioning stage, PSO is used to optimize weight of BP neural network to accelerate convergence of BP neural network and improve learning speed. The experimental results show that the algorithm is more adapted to the coal mine environment varies with time, and meets the requirement of adaptive underground positioning.
  • Related Articles

    [1]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [2]MA Tianbing, WANG Xiaodong, DU Fei, CHEN Nanna. Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network[J]. Journal of Mine Automation, 2018, 44(8): 76-80. DOI: 10.13272/j.issn.1671-251x.2018010051
    [3]SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
    [4]LIU Jinwei, XIE Xionggang, FANG Jing. Effect analysis of coal seam water infusion based on genetic algorithm-BP neural network[J]. Journal of Mine Automation, 2016, 42(1): 48-51. DOI: 10.13272/j.issn.1671-251x.2016.01.014
    [5]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [6]WANG Sheguo, TIAN Zhimin, ZHANG Feng, WU Shasha. System of coal and gas outburst prediction based on improved BP neural network[J]. Journal of Mine Automation, 2014, 40(5): 34-37. DOI: 10.13272/j.issn.1671-251x.2014.05.009
    [7]LI Mao-dong, LIANG Yong-zhi, JIA Wen-pei, XIA Lu-yi. Application of BP neural network method based on genetic optimization in methane detectio[J]. Journal of Mine Automation, 2013, 39(2): 51-53.
    [8]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
    [9]ZHAO Yan-ming. Predicting Model of Gas Content Based on Improved BP Neural Network[J]. Journal of Mine Automation, 2009, 35(4): 10-13.
    [10]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
  • Cited by

    Periodical cited type(20)

    1. 刘相通,李曼,沈思怡,曹现刚,刘俊祺. 液压支架关键姿态参数测量系统. 工矿自动化. 2024(04): 41-49 . 本站查看
    2. 文治国. 四柱支撑掩护式液压支架支护状态分析计算. 煤矿机械. 2023(04): 23-26 .
    3. 张坤,孙政贤,刘亚,李玉霞,杜明超,马英,魏训涛,徐亚军,王鑫,余铜柱,丁超. 基于信息融合技术的超前液压支架姿态感知方法及实验验证. 煤炭学报. 2023(S1): 345-356 .
    4. 权钰涵,张啸,刘冬,罗睿,贺云. 融合激光SLAM实现平衡车智能导航. 电子技术应用. 2023(10): 141-147 .
    5. 庞义辉,刘新华,王泓博,姜志刚,关书方,张自发,王伟. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法. 采矿与安全工程学报. 2023(06): 1231-1242 .
    6. 王裕,史艳楠,王毅颖,齐朋磊,王翰秋. 固体充填液压支架全位姿测量及虚拟仿真. 工矿自动化. 2022(07): 81-89 . 本站查看
    7. 卢金强. 矿井液压支架激光定位传感器的应用研究. 机械管理开发. 2022(09): 240-242 .
    8. 梁娜娜. 基于灰色理论的液压支架姿态监测方法研究. 煤矿机械. 2021(05): 191-193 .
    9. 胡相捧,刘新华. 初撑阶段的支架位姿与驱动千斤顶一一映射及调整策略. 采矿与安全工程学报. 2021(04): 666-677 .
    10. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 .
    11. 张雪梅. 基于无线传感数据的液压支架三维姿态监测. 山西焦煤科技. 2021(09): 31-35 .
    12. 郭春福,占晓祥,张宁,韩智儒. 井下液压支架运行姿态智能感知技术分析. 中国高新科技. 2021(18): 97-98 .
    13. 曹贯强,赵文生. 基于MEMS加速度计的高精度倾角传感器研制. 自动化仪表. 2020(03): 25-28+35 .
    14. 廉自生,袁祥,高飞,廖瑶瑶,郭永昌,赵瑞豪. 液压支架网络化智能感控方法. 煤炭学报. 2020(06): 2078-2089 .
    15. 白晋铭,王然风,付翔. 基于架间行走机器人的液压支架直线度测量方法. 工矿自动化. 2019(01): 45-51 . 本站查看
    16. 张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法. 工矿自动化. 2019(03): 56-60 . 本站查看
    17. 王昕,李鹏鹏,沈行良. 基于影像的角度测量系统设计与实现. 智能计算机与应用. 2019(04): 271-273+277 .
    18. 马旭东,许春雨,宋建成. 综采工作面液压支架姿态监测系统设计. 煤炭技术. 2019(07): 174-177 .
    19. 许金星. 机器视觉的液压支架姿态角度测量系统设计. 煤矿机械. 2019(09): 11-13 .
    20. 张德生,任怀伟,何明,卞冀,李提建,马强. 两柱掩护式液压支架内外加载支护对比试验研究. 煤炭科学技术. 2019(11): 135-142 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (64) PDF downloads (10) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return