ZHANG Haijun, SUN Xuecheng, ZHAO Xiaohu, YAN Kuncheng. Research on UWB personnel positioning system in coal mine[J]. Journal of Mine Automation, 2022, 48(2): 29-34,41. DOI: 10.13272/j.issn.1671-251x.17824
Citation: ZHANG Haijun, SUN Xuecheng, ZHAO Xiaohu, YAN Kuncheng. Research on UWB personnel positioning system in coal mine[J]. Journal of Mine Automation, 2022, 48(2): 29-34,41. DOI: 10.13272/j.issn.1671-251x.17824

Research on UWB personnel positioning system in coal mine

More Information
  • Received Date: August 08, 2021
  • Revised Date: February 06, 2022
  • Available Online: February 28, 2022
  • In order to solve the problem that non-line-of-sight(NLOS) interference affects wireless signal transmission in complex underground environment of coal mines, an ultra wide band(UWB) personnel positioning system in coal mine is designed. The system uses asymmetric double-sided two-way ranging algorithm with return frame mechanism for ranging without clock synchronization, which ensures the ranging precision. The positioning area is divided by the area discrimination strategy and the area correction strategy, so that the tag can only communicate with the base station in the positioning area to achieve positioning, which avoids a large number of invalid frames in the positioning process and improves the positioning efficiency. The weighted least squares method and the unscented Kalman filter joint positioning algorithm are used to solve the tag position coordinates, which improves the positioning precision. A backup power supply is configured in the base station to ensure emergency power supply in case of power failure. Two communication modes, Ethernet and LoRa, are adopted. When the Ethernet is disconnected, the ranging data is transmitted in the LoRa mode, which ensures the emergency communication of the system. The test results show that the system has high dynamic and static positioning precision and strong anti-NLOS interference capability. When the base station is powered off or the Ethernet is disconnected, the system can realize emergency communication for a period of time.
  • [1]
    刘耀波.基于红外探测的人员搜索及定位技术研究[J].矿山测量,2020,48(5):31-35.

    LIU Yaobo.Research on personnel search and orientation technology based on infrared detection[J].Mine Surveying,2020,48(5):31-35.
    [2]
    田子建,李宗伟,刘晓阳,等.基于电磁波及超声波联合测距的井下定位方法[J].北京理工大学学报,2014,34(5):490-494.

    TIAN Zijian,LI Zongwei,LIU Xiaoyang,et al.A positioning method in mine tunnel based on joint electromagnetic wave and ultrasonic distance measurement[J].Transactions of Beijing Institute of Technology,2014,34(5):490-494.
    [3]
    ABDULRAHMAN A, ABDULMALIK A S, MANSOUR A, et al. Ultra wideband indoor positioning technologies:analysis and recent advances[J].Sensors,2016,16(5):1-36.
    [4]
    丁亚男,张旭,徐露.基于UWB的室内定位技术综述[J].智能计算机与应用,2019,9(5):91-94.

    DING Yanan,ZHANG Xu,XU Lu.Overview of indoor positioning technology based on UWB[J].Intelligent Computer and Applications,2019,9(5):91-94.
    [5]
    仲江涛.基于UWB室内定位算法的研究与实现[D].深圳:深圳大学,2017.

    ZHONG Jiangtao.Research and implementation of indoor location algorithm based on UWB[D].Shenzhen:Shenzhen University,2017.
    [6]
    顾慧东.基于UWB的室内测距与定位系统[D].南京:南京邮电大学,2020.

    GU Huidong.Indoor ranging and positioning system based on UWB[D]. Nanjing:Nanjing University of Posts and Telecommunications,2020.
    [7]
    丁升.LOS与NLOS混合环境下基于UWB的室内定位算法研究及实现[D].重庆:重庆邮电大学,2020. DING Sheng.Research and implementation of UWB-based indoor location algorithm in mixed environment of LOS and NLOS[D].Chongqing:Chongqing University of Posts and Telecommunications,2020.
    [8]
    崔海尚.UWB室内定位的非视距障碍物识别与误差补偿[D].徐州:中国矿业大学,2020. CUI Haishang.Non-line-of-sight obstacle recognition and error compensation for UWB indoor positioning[D].Xuzhou:China University of Mining and Technology,2020.
    [9]
    何永平,刘冉,付文鹏,等.非视距环境下基于UWB的室内动态目标定位[J].传感器与微系统,2020,39(8):46-49.

    HE Yongping,LIU Ran,FU Wenpeng,et al.Indoor dynamic object positioning in NLOS environment based on UWB[J].Transducer and Microsystem Technologies,2020,39(8):46-49.
    [10]
    罗豪龙,李广云,欧阳文,等.基于自适应卡尔曼滤波的TDOA定位方法[J].测绘科学技术学报,2020,37(3):252-257.

    LUO Haolong,LI Guangyun,OUYANG Wen,et al.TDOA positioning method based on adaptive Kalman filter[J].Journal of Geomatics Science and Technology,2020,37(3):252-257.
    [11]
    王浩,李波.基于UWB的室内高精度动态定位算法实现[J].信息通信,2020(3):35-39.

    WANG Hao,LI Bo.Realization of indoor high precision dynamic positioning algorithm based on UWB[J].Information & Communications,2020(3):35-39.
    [12]
    DOTLIC I,CONNELL A,HANG M,et al.Angle of arrival estimation using decawave DW1000 integrated circuits[C]//The 14th Workshop on Positioning, Navigation and Communications,Bremen,2017:1-6.
    [13]
    NAEL A, ABDUL H, DAHLILA P. Evaluation of LoRa-based air pollution monitoring system[J].International Journal of Advanced Computer Science and Applications,2019,10(7):391-396.
    [14]
    卢靖宇,余文涛,赵新,等.基于超宽带的移动机器人室内定位系统设计[J].电子技术应用,2017,43(5):25-28.

    LU Jingyu,YU Wentao,ZHAO Xin,et al.Design of indoor positioning system for mobile robot based on ultra-wideband[J].Application of Electronic Technique,2017,43(5):25-28.
    [15]
    GHAEDI A, GOLSHAN M. Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors[J].Electric Power Systems Research,2021,190:106854.
    [16]
    王晓明.基于测距的超宽带室内定位算法研究[D].徐州:中国矿业大学,2019. WANG Xiaoming.Research on ultra-wideband indoor positioning algorithm based on ranging[D].Xuzhou: China University of Mining and Technology,2019.
  • Related Articles

    [1]SONG Danyang, LU Chungui, TAO Xinya, YANG Jinheng, WANG Pei'en, ZHENG Wenqiang, SONG Jiancheng. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation, 2022, 48(11): 119-124. DOI: 10.13272/j.issn.1671-251x.2022020030
    [2]PAN Xiaobo. Design of low-power distributed gas concentration monitoring system based on LoRa[J]. Journal of Mine Automation, 2021, 47(6): 103-108. DOI: 10.13272/j.issn.1671-251x.2021030052
    [3]ZHANG Di, QUAN Yue, GUO Hai, ZHOU Xiaojie, DONG Fei, ZHAO Duan. Design of multifunctional miner lamp based on LoRa and RT-Thread[J]. Journal of Mine Automation, 2021, 47(6): 96-102. DOI: 10.13272/j.issn.1671-251x.2021030102
    [4]LI Qiwei. Design of wireless pressure sensor of hydraulic support based on LoRa technology[J]. Journal of Mine Automation, 2020, 46(12): 111-115. DOI: 10.13272/j.issn.1671-251x.2020040021
    [5]CHEN Xiaojing. Research on application of LoRa networking technology in belt conveyor transportation monitoring system[J]. Journal of Mine Automation, 2020, 46(4): 91-97. DOI: 10.13272/j.issn.1671-251x.2019090038
    [6]WANG Wei. Underground precise positioning algorithm based on Kalman filter and weighted LM algorithm[J]. Journal of Mine Automation, 2019, 45(11): 5-9. DOI: 10.13272/j.issn.1671-251x.17500
    [7]SUN Zhexing , WANG Yanwen. Two-dimensional accurate personnel positioning method in underground coal mine based on Kalman filter[J]. Journal of Mine Automation, 2018, 44(5): 31-35. DOI: 10.13272/j.issn.1671-251x.17318
    [8]HUO Zhenlong. Application analysis of LoRa technology in mine wireless communicatio[J]. Journal of Mine Automation, 2017, 43(10): 34-37. DOI: 10.13272/j.issn.1671-251x.2017.10.006
    [9]LUO Yu-feng, LIU Yong, LI Fang. Application of Kalman filter in underground personnel tracking and positioning[J]. Journal of Mine Automation, 2013, 39(9): 54-58. DOI: 10.7526/j.issn.1671-251X.2013.09.015
    [10]YANG Jing, SHI Lian-jun, LI Xin-ping, SHOU Long. The Study of CAT Test Board for Motor[J]. Journal of Mine Automation, 2001, 27(4): 14-15.
  • Cited by

    Periodical cited type(5)

    1. 胡相捧,刘新华. 两柱掩护式液压支架初撑过程的机构演化机理. 煤炭科学技术. 2023(08): 239-249 .
    2. 金花,丁广炜,袁光英. 高架桥梁施工中梁体升降液压平衡自动控制方法. 自动化与仪器仪表. 2021(01): 115-118+123 .
    3. 迟振宇,王军辉,巩德华,贾晖,曹连民. 液压支架带压移架推移回路系统设计. 煤矿机械. 2021(04): 11-14 .
    4. 赵锐. 液压支架手动换向阀耐久性试验自动化装置设计. 工矿自动化. 2020(04): 104-108 . 本站查看
    5. 李志旭,王庭明,孟祥强,李会,曹连民. 掩护式液压支架平衡控制回路补液系统设计分析. 煤矿机械. 2019(09): 30-33 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (541) PDF downloads (128) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return