SONG Danyang, LU Chungui, TAO Xinya, et al. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation,2022,48(11):119-124. DOI: 10.13272/j.issn.1671-251x.2022020030
Citation: SONG Danyang, LU Chungui, TAO Xinya, et al. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation,2022,48(11):119-124. DOI: 10.13272/j.issn.1671-251x.2022020030

Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm

More Information
  • Received Date: February 17, 2022
  • Revised Date: October 29, 2022
  • Available Online: June 13, 2022
  • The existing hydraulic support straightening method is affected by the sensor measurement error and the hydraulic support moving error, which make the straightening error larger. In the non-Gaussian measurement noise environment, the traditional Kalman filter (KF) straightening method has low accuracy in predicting the trajectory of the hydraulic support, and cannot achieve the ideal straightening effect. In order to solve the above problems, a hydraulic support straightening method based on maximum correntropy Kalman filtering (MCKF) algorithm is proposed. Firstly, the straightening reference line is determined according to the position coordinates of the hydraulic support and the advancing direction of the working face. Secondly, the state equation and observation equation of the linear moving system of hydraulic support is constructed according to the straightening principle of hydraulic support. After MCKF algorithm processing, the predicted trajectory of hydraulic support after moving is obtained. Finally, the moving distance compensation amount of each hydraulic support is calculated according to the predicted trajectory of the hydraulic support and the straightening reference line, so as to achieve the purpose of straightening. The simulation results show that the hydraulic support straightening method based on the MCKF algorithm can effectively reduce the influence of measurement noise and process noise on the straightness of the hydraulic support compared with the existing straightening method based on the KF algorithm. When the measurement noise obeys non-Gaussian distribution, the average of mean square error of the method is only 4.76 mm, which is far less than the mean square error of the straightening method based on the KF algorithm. The real trajectory of the hydraulic support can be predicted more accurately, which reduces the straightening error of the hydraulic support by 36% after straightening. The method thus effectively improves the straightening precision. The straightening error of the hydraulic support is only related to this straightening process, which effectively avoids the accumulated error.
  • [1]
    罗开成,常亚军,高有进. 综采工作面智能开采关键技术实践[J]. 煤炭科学技术,2020,48(7):73-79. DOI: 10.13199/j.cnki.cst.2020.07.006

    LUO Kaicheng,CHANG Yajun,GAO Youjin. Key technology practice of intelligent mining in fully-mechanized coal mining face[J]. Coal Science and Technology,2020,48(7):73-79. DOI: 10.13199/j.cnki.cst.2020.07.006
    [2]
    李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39. DOI: 10.13199/j.cnki.cst.2021.04.004

    LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39. DOI: 10.13199/j.cnki.cst.2021.04.004
    [3]
    葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46. DOI: 10.13199/j.cnki.cst.2020.07.002

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. DOI: 10.13199/j.cnki.cst.2020.07.002
    [4]
    白晋铭,王然风,付翔. 基于架间行走机器人的液压支架直线度测量方法[J]. 工矿自动化,2019,45(1):45-51. DOI: 10.13272/j.issn.1671-251x.2018060008

    BAI Jinming,WANG Ranfeng,FU Xiang. A straightness measurement method of hydraulic support based on inter supports walking robot[J]. Industry and Mine Automation,2019,45(1):45-51. DOI: 10.13272/j.issn.1671-251x.2018060008
    [5]
    胡波,廉自生. 基于支持向量机和遗传算法的液压支架调直系统研究[J]. 煤矿机械,2014,35(10):39-41. DOI: 10.13436/j.mkjx.201410019

    HU Bo,LIAN Zisheng. Study on hydraulic support straightening system based on support vector machine and genetic algorithm[J]. Coal Mine Machinery,2014,35(10):39-41. DOI: 10.13436/j.mkjx.201410019
    [6]
    张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法[J]. 工矿自动化,2019,45(3):56-60. DOI: 10.13272/j.issn.1671-251x.2018090039

    ZHANG Xuhui,WANG Dongman,YANG Wenjuan. Position detection method of hydraulic support based on vision measurement[J]. Industry and Mine Automation,2019,45(3):56-60. DOI: 10.13272/j.issn.1671-251x.2018090039
    [7]
    牛剑峰. 基于视频巡检的综采工作面无人化关键技术研究[J]. 煤炭科学技术,2019,47(10):141-146. DOI: 10.13199/j.cnki.cst.2019.10.018

    NIU Jianfeng. Research on unmanned key technology of fully-mechanized mining face based on video inspection[J]. Coal Science and Technology,2019,47(10):141-146. DOI: 10.13199/j.cnki.cst.2019.10.018
    [8]
    杨学军,王然风,王怀法. 液压支架直线度检测机器人激光定位矩阵研究[J]. 工矿自动化,2019,45(1):52-56. DOI: 10.13272/j.issn.1671-251x.2018060035

    YANG Xuejun,WANG Ranfeng,WANG Huaifa. Research on laser positioning matrix of straightness detection robot for hydraulic support[J]. Industry and Mine Automation,2019,45(1):52-56. DOI: 10.13272/j.issn.1671-251x.2018060035
    [9]
    张树楠,曹现刚,崔亚仲,等. 基于多传感器的液压支架直线度测量方法研究[J]. 煤矿机械,2020,41(4):56-59. DOI: 10.13436/j.mkjx.202004019

    ZHANG Shunan,CAO Xiangang,CUI Yazhong,et al. Research on straightness measurement method of hydraulic support based on multi-sensor[J]. Coal Mine Machinery,2020,41(4):56-59. DOI: 10.13436/j.mkjx.202004019
    [10]
    王宇卓,常宗旭,高飞,等. 液压支架的调直方法研究[J]. 机电工程,2021,38(5):645-649. DOI: 10.3969/j.issn.1001-4551.2021.05.020

    WANG Yuzhuo,CHANG Zongxu,GAO Fei,et al. Study on the alignment method of hydraulic support[J]. Journal of Mechanical & Electrical Engineering,2021,38(5):645-649. DOI: 10.3969/j.issn.1001-4551.2021.05.020
    [11]
    张帆,李闯,李昊. 智能综采工作面刮板输送机直线度监测方法研究[J]. 煤炭科学技术,2022,50(4):246-255. DOI: 10.13199/j.cnki.cst.2020-0591

    ZHANG Fan,LI Chuang,LI Hao. Study on straightness monitoring method of scraper conveyor in intelligent fully-mechanized mining face[J]. Coal Science and Technology,2022,50(4):246-255. DOI: 10.13199/j.cnki.cst.2020-0591
    [12]
    李志鹏,程兰,王志飞,等. 卡尔曼滤波框架下基于最大相关熵的移动机器人位姿估计[J]. 太原理工大学学报,2021,52(6):936-944. DOI: 10.16355/j.cnki.issn1007-9432tyut.2021.06.012

    LI Zhipeng,CHENG Lan,WANG Zhifei,et al. Pose estimation of mobile robots based on maximum correntropy under Kalman filtering framework[J]. Journal of Taiyuan University of Technology,2021,52(6):936-944. DOI: 10.16355/j.cnki.issn1007-9432tyut.2021.06.012
    [13]
    CHEN Badong,LIU Xi,ZHAO Haiquan,et al. Maximum correntropy Kalman filter[J]. Automatica,2017,76:70-77. DOI: 10.1016/j.automatica.2016.10.004
    [14]
    李松,唐小妹,孙鹏跃,等. GNSS/INS紧组合最大熵卡尔曼滤波算法[J]. 全球定位系统,2020,45(4):1-8. DOI: 10.13442/j.gnss.1008-9268.2020.04.001

    LI Song,TANG Xiaomei,SUN Pengyue,et al. Maximum correntropy Kalman filter for GNSS/INS tightly-coupled integration[J]. GNSS World of China,2020,45(4):1-8. DOI: 10.13442/j.gnss.1008-9268.2020.04.001
    [15]
    龙子旋,周琪,彭侠夫,等. 非高斯环境下船变测量最大熵卡尔曼滤波方法[J]. 系统工程与电子技术,2021,43(11):3278-3287. DOI: 10.12305/j.issn.1001-506X.2021.11.28

    LONG Zixuan,ZHOU Qi,PENG Xiafu,et al. Maximum correntropy Kalman filter used for hull deformation measurement in non-Gaussian environment[J]. Systems Engineering and Electronics,2021,43(11):3278-3287. DOI: 10.12305/j.issn.1001-506X.2021.11.28
  • Related Articles

    [1]LI Guihu, GAO Guijun, LI Junxia, JIA Xuefeng. A pose recognition method for warehouse cleaning robots based on extended Kalman filtering[J]. Journal of Mine Automation, 2024, 50(5): 99-106. DOI: 10.13272/j.issn.1671-251x.2024020004
    [2]WEI Zhaoyang, DUAN Jiandong. Non-communication protection of coal mine DC distribution lines based on transient current derivation[J]. Journal of Mine Automation, 2023, 49(10): 26-34. DOI: 10.13272/j.issn.1671-251x.2022120024
    [3]LI Chengcheng, MA Lisen, TIAN Yuan, JIA Yunhong, JIA Qu, TIAN Weiqin, ZHANG Kai. An onboard video stabilization algorithm for roadheader based on CLAHE and Kalman filter[J]. Journal of Mine Automation, 2023, 49(5): 66-73. DOI: 10.13272/j.issn.1671-251x.2022100002
    [4]ZHANG Xiaoyan, GUO Haitao. Underground target detection algorithm based on improved Gaussian mixture model[J]. Journal of Mine Automation, 2021, 47(4): 67-72. DOI: 10.13272/j.issn.1671-251x.2021010063
    [5]ZHANG Na. Mine weighted centroid positioning algorithm based on improved Gaussian mixture filter[J]. Journal of Mine Automation, 2019, 45(11): 24-30. DOI: 10.13272/j.issn.1671-251x.17420
    [6]WANG Wei. Underground precise positioning algorithm based on Kalman filter and weighted LM algorithm[J]. Journal of Mine Automation, 2019, 45(11): 5-9. DOI: 10.13272/j.issn.1671-251x.17500
    [7]SUN Zhexing , WANG Yanwen. Two-dimensional accurate personnel positioning method in underground coal mine based on Kalman filter[J]. Journal of Mine Automation, 2018, 44(5): 31-35. DOI: 10.13272/j.issn.1671-251x.17318
    [8]ZHANG Lingtao, ZHANG Hui. Measurement algorithm of heading angle of roadheader based on Kalman filter[J]. Journal of Mine Automation, 2014, 40(11): 100-103. DOI: 10.13272/j.issn.1671-251x.2014.11.024
    [9]QIAN Jiansheng, LI Xiaobin, QIN Wenguang, QIN Haichu. A prediction method of coal piling time for belt conveyor based on mixture of Gaussian and hidden Markov model[J]. Journal of Mine Automation, 2014, 40(11): 26-30. DOI: 10.13272/j.issn.1671-251x.2014.11.007
    [10]ZHAO Jing. Inertial navigation positioning method of shearer based on Kalman filtering algorithm[J]. Journal of Mine Automation, 2014, 40(10): 29-32. DOI: 10.13272/j.issn.1671-251x.2014.10.009
  • Cited by

    Periodical cited type(6)

    1. 李晓真,张海波,单光朋. 基于激光雷达煤流监测的带式输送机自适应调速方法研究. 煤矿机械. 2025(04): 212-215 .
    2. 任助理,朱红洋,袁瑞甫,王伸. 三维激光扫描技术在地下矿山中的应用综述与展望. 河南理工大学学报(自然科学版). 2025(03): 89-100 .
    3. 徐军锋,王兴海,刘金华,张志辉. 考虑运输效率和煤料质量的输料带控制优化研究. 煤化工. 2025(02): 65-68+107 .
    4. 葛世荣. 刮板输送机技术发展历程(四)——智能化成套装备. 中国煤炭. 2024(05): 1-12 .
    5. 李玮. 基于Modbus-RTU的皮带机数据采集系统开发及应用. 中阿科技论坛(中英文). 2024(10): 74-78 .
    6. 朱富文,侯志会,李明振. 轻量化的多尺度跨通道注意力煤流检测网络. 工矿自动化. 2023(08): 100-105 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (161) PDF downloads (21) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return