SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Journal of Mine Automation, 2020, 46(8): 1-7. DOI: 10.13272/j.issn.1671-251x.17648
Citation: SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Journal of Mine Automation, 2020, 46(8): 1-7. DOI: 10.13272/j.issn.1671-251x.17648

Coal mine intelligence and mine-used 5G

More Information
  • Aiming at characteristics of electrical explosion-proof and large wireless transmission attenuation in underground coal mine, 5G technology and its application scope were analyzed.Mine-used 5G should adopt intrinsically safe explosion-proof. Mine-used 5G for control should have strong anti-interference ability. Mine-used 5G should be used for remote control of coal mining face and tunneling face. Mine-used 5G should be used for ground remote control of unmanned vehicle in underground coal mine. Mine-used 5G that has not been developed for characteristics of mine mobile communication is less cost-effective than mine-used WiFi mobile communication system. It is strictly forbidden to replace mine-used wired dispatching communication system with mine-used 5G mobile communication system. Mine-used 5G that is not developed for coal mine safety monitoring characteristics cannot replace coal mine safety monitoring system. Positioning accuracy of mine-used 5G that has not been developed for precise positioning characteristics of mine moving target is lower than that of mine-used UWB precision positioning system. Transmission rate of mine-used 5G in frequency range of 450-6 000 MHz is lower than that of mine-used WiFi6. Reliability of mine-used 5G that is not developed for monitoring characteristics of fixed equipment in underground coal mine is lower than that of mine-used wired monitoring system. It is urgent to research and develop mine-used 5G based on characteristics of safe production in coal mine, not just for explosion-proof transformation of existing ground 5G products.
  • Related Articles

    [1]JIA Yutao, LI Guanhua, PAN Hongguang, CHEN Haijian, WEI Xuqiang, BAI Junming. A fusion positioning method for underground personnel based on UWB and PDR[J]. Journal of Mine Automation, 2024, 50(6): 96-102, 135. DOI: 10.13272/j.issn.1671-251x.2024010071
    [2]LI Mingfeng, LI Yan, LIU Yong, WU Xuesong, XU Jisheng, CHANG Jianming, WANG Tao, PAN Hongguang. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation, 2024, 50(1): 25-34. DOI: 10.13272/j.issn.1671-251x.2023100066
    [3]LYU Ruijie. Measurement of UWB signal path loss and center frequency selection in underground coal mines[J]. Journal of Mine Automation, 2023, 49(4): 147-152. DOI: 10.13272/j.issn.1671-251x.18085
    [4]GUO Aijun. A joint positioning method of PDOA and TOF in coal mines based on UWB[J]. Journal of Mine Automation, 2023, 49(3): 137-141. DOI: 10.13272/j.issn.1671-251x.18078
    [5]JU Chen. Optimization design and application of circularly polarized antenna in mine UWB positioning system[J]. Journal of Mine Automation, 2023, 49(1): 171-176. DOI: 10.13272/j.issn.1671-251x.18071
    [6]NIU Yonggang, DOU Xueli, YIN Peng, LI Jingsheng, LUAN Liangliang, LAN Xiang. Positioning system of fully mechanized working face based on UWB and laser ranging[J]. Journal of Mine Automation, 2021, 47(7): 125-129. DOI: 10.13272/j.issn.1671-251x.17732
    [7]GUO Anbin, SU Hongjun, YAN Xiaoheng. Research on positioning algorithm of electric mine shovel based on UWB technology[J]. Journal of Mine Automation, 2020, 46(12): 95-100. DOI: 10.13272/j.issn.1671-251x.2020070067
    [8]YOU Xiaorong, PEI Hao, HUO Zhenlong. An improved trilateral positioning algorithm based on UWB[J]. Journal of Mine Automation, 2019, 45(11): 19-23. DOI: 10.13272/j.issn.1671-251x.2019050081
    [9]LIU Yiming, LIU Wanli, ZHANG Boyuan, YANG Binhai. Research of precision improving algorithm of shearer positioning based on UWB[J]. Journal of Mine Automation, 2016, 42(12): 25-30. DOI: :10.13272/j.issn.1671-251x.2016.12.006
    [10]CHEN Ruo-shan, WANG Yan-fe. Application Research of UWB Positioning Algorithm of Coal Mine Underground[J]. Journal of Mine Automation, 2008, 34(6): 5-8.
  • Cited by

    Periodical cited type(20)

    1. 刘相通,李曼,沈思怡,曹现刚,刘俊祺. 液压支架关键姿态参数测量系统. 工矿自动化. 2024(04): 41-49 . 本站查看
    2. 文治国. 四柱支撑掩护式液压支架支护状态分析计算. 煤矿机械. 2023(04): 23-26 .
    3. 张坤,孙政贤,刘亚,李玉霞,杜明超,马英,魏训涛,徐亚军,王鑫,余铜柱,丁超. 基于信息融合技术的超前液压支架姿态感知方法及实验验证. 煤炭学报. 2023(S1): 345-356 .
    4. 权钰涵,张啸,刘冬,罗睿,贺云. 融合激光SLAM实现平衡车智能导航. 电子技术应用. 2023(10): 141-147 .
    5. 庞义辉,刘新华,王泓博,姜志刚,关书方,张自发,王伟. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法. 采矿与安全工程学报. 2023(06): 1231-1242 .
    6. 王裕,史艳楠,王毅颖,齐朋磊,王翰秋. 固体充填液压支架全位姿测量及虚拟仿真. 工矿自动化. 2022(07): 81-89 . 本站查看
    7. 卢金强. 矿井液压支架激光定位传感器的应用研究. 机械管理开发. 2022(09): 240-242 .
    8. 梁娜娜. 基于灰色理论的液压支架姿态监测方法研究. 煤矿机械. 2021(05): 191-193 .
    9. 胡相捧,刘新华. 初撑阶段的支架位姿与驱动千斤顶一一映射及调整策略. 采矿与安全工程学报. 2021(04): 666-677 .
    10. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 .
    11. 张雪梅. 基于无线传感数据的液压支架三维姿态监测. 山西焦煤科技. 2021(09): 31-35 .
    12. 郭春福,占晓祥,张宁,韩智儒. 井下液压支架运行姿态智能感知技术分析. 中国高新科技. 2021(18): 97-98 .
    13. 曹贯强,赵文生. 基于MEMS加速度计的高精度倾角传感器研制. 自动化仪表. 2020(03): 25-28+35 .
    14. 廉自生,袁祥,高飞,廖瑶瑶,郭永昌,赵瑞豪. 液压支架网络化智能感控方法. 煤炭学报. 2020(06): 2078-2089 .
    15. 白晋铭,王然风,付翔. 基于架间行走机器人的液压支架直线度测量方法. 工矿自动化. 2019(01): 45-51 . 本站查看
    16. 张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法. 工矿自动化. 2019(03): 56-60 . 本站查看
    17. 王昕,李鹏鹏,沈行良. 基于影像的角度测量系统设计与实现. 智能计算机与应用. 2019(04): 271-273+277 .
    18. 马旭东,许春雨,宋建成. 综采工作面液压支架姿态监测系统设计. 煤炭技术. 2019(07): 174-177 .
    19. 许金星. 机器视觉的液压支架姿态角度测量系统设计. 煤矿机械. 2019(09): 11-13 .
    20. 张德生,任怀伟,何明,卞冀,李提建,马强. 两柱掩护式液压支架内外加载支护对比试验研究. 煤炭科学技术. 2019(11): 135-142 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (271) PDF downloads (108) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return