GUO Aijun. A joint positioning method of PDOA and TOF in coal mines based on UWB[J]. Journal of Mine Automation,2023,49(3):137-141. DOI: 10.13272/j.issn.1671-251x.18078
Citation: GUO Aijun. A joint positioning method of PDOA and TOF in coal mines based on UWB[J]. Journal of Mine Automation,2023,49(3):137-141. DOI: 10.13272/j.issn.1671-251x.18078

A joint positioning method of PDOA and TOF in coal mines based on UWB

More Information
  • Received Date: February 12, 2023
  • Revised Date: March 16, 2023
  • Available Online: March 26, 2023
  • The precise positioning of personnel and vehicles in coal mines is an important guarantee for safe and efficient production in coal mines. Currently, ultra-wideband (UWB) wireless communication technology is mainly used for the precise positioning of personnel and vehicles in coal mines. The positioning method that only uses the time of flight (TOF) requires two positioning substations or antennas for joint ranging and direction. It has problems such as large antenna spacing, inconvenience in installation and maintenance, and large positioning errors. In order to solve the above problems, a joint positioning method based on UWB phase difference of arrival (PDOA) and TOF is proposed for one-dimensional positioning scenarios in coal mines. This method measures the distance between the positioning card and the positioning substation through TOF, and judges the direction of the positioning card through PDOA. The method locates the positioning card based on the measured distance and direction between the positioning card and the positioning substation. This method determines the angle of arrival (AOA) of the positioning card based on the phase difference between the radio signals transmitted from the positioning card and the two antennas of the positioning substation. It does not require a large antenna spacing to determine the direction of the positioning card. It shortens the distance between the two antennas of the positioning substation. It integrates the two antennas to facilitate installation and maintenance, improving positioning precision. The underground testing results of coal mines show that the positioning precision of this method is within 15 cm. Within the test distance range of 200 m, the positioning precision is not affected by the distance. The TOF ranging value is stable within a range of ± 10 cm relative to its mean value, with good stability.
  • [1]
    孙继平. 煤矿井下安全避险“六大系统”的作用和配置方案[J]. 工矿自动化,2010,36(11):1-4.

    SUN Jiping. Effect and configuration of "six systems" for safe act of rescue of coal mine underground[J]. Industry and Mine Automation,2010,36(11):1-4.
    [2]
    孙继平. 煤矿井下人员位置监测技术与系统[J]. 煤炭科学技术,2010,38(11):1-5.

    SUN Jiping. Personnel position monitoring technology and system in underground mine[J]. Coal Science and Technology,2010,38(11):1-5.
    [3]
    AQ 6210—2007 煤矿井下作业人员管理系统通用技术条件[S].

    AQ 6210-2007 General technical conditions of the system for the management of the underground personnel in a coal mine[S].
    [4]
    AQ 1048—2007 煤矿井下作业人员管理系统使用与管理规范[S].

    AQ 1048-2007 Specification for the usage and management of the system for the management of the underground personnel in a coal mine[S].
    [5]
    孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83.

    SUN Jiping. New technology and development of mine informatization automation[J]. Coal Science and Technology,2016,44(1):19-23,83.
    [6]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [7]
    孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
    [8]
    孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.
    [9]
    孙继平, 江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化, 2022, 48(5): 1-5, 31.

    SUN Jiping, JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation, 2022, 48(5): 1-5, 31.
    [10]
    符世琛,李一鸣,张敏骏,等. 基于UWB信号的TW−TOF测距技术在狭长巷道中的精度测试实验研究[J]. 煤炭技术,2017,36(3):246-248.

    FU Shichen,LI Yiming,ZHANG Minjun,et al. Accuracy testing experiment in narrow roadway based on TW-TOF ranging technique of UWB signals[J]. Coal Technology,2017,36(3):246-248.
    [11]
    刘清. 基于超宽带技术的采煤机定位系统设计[J]. 煤炭科学技术,2016,44(11):132-135.

    LIU Qing. Design on positioning system of shearer based on ultra wide band technology[J]. Coal Science and Technology,2016,44(11):132-135.
    [12]
    孙继平. 煤矿安全生产监控与通信技术[J]. 煤炭学报,2010,35(11):1925-1929.

    SUN Jiping. Technologies of monitoring and communication in the coal mine[J]. Journal of China Coal Society,2010,35(11):1925-1929.
    [13]
    孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5.

    SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5.
    [14]
    孙继平. 煤矿事故特点与煤矿通信、人员定位及监视新技术[J]. 工矿自动化,2015,41(2):1-5.

    SUN Jiping. Characteristics of coal mine accidents and new technologies of coal mine communication,personnel positioning and monitoring[J]. Industry and Mine Automation,2015,41(2):1-5.
    [15]
    车志平. 基于TOF测距的无线传感器网络定位技术研究[D]. 大连: 大连理工大学, 2016.

    CHE Zhiping. Research of localization technology based on TOF ranging in wireless sensor network[D]. Dalian: Dalian University of Technology, 2016.
    [16]
    常华伟,王福豹,严国强,等. 无线传感器网络的TOF测距方法研究[J]. 现代电子技术,2011,34(1):35-38.

    CHANG Huawei,WANG Fubao,YAN Guoqiang,et al. TOF ranging method for wireless sensor networks[J]. Modern Electronics Technique,2011,34(1):35-38.
    [17]
    MOK E,XIA Linyuan,RETSCHER G,et al. A case study on the feasibility and performance of an UWB-AoA real time location system for resources management of civil construction projects[J]. Journal of Applied Geodesy,2010,4(1):23-32.
    [18]
    JACHIMCZYK B,DZIAK D,KULESZA W J. Customization of UWB 3D-RTLS based on the new uncertainty model of the AoA ranging technique[J]. Sensors,2017,17(2):227-252. DOI: 10.3390/s17020227
    [19]
    DOTLIC I, CONNELL A, MA Hang, et al. Angle of arrival estimation using decawave DW1000 integrated circuits[C]. 14th Workshop on Positioning, Navigation and Communications, Bremen, 2017. DOI: 10.1109/WPNC.2017.8250079.
    [20]
    孙继平. 《煤矿安全规程》安全监控与人员位置监测修订意见[J]. 工矿自动化,2014,40(6):1-7.

    SUN Jiping. Proposal of revision for safety monitoring and control and personnel position monitoring of Coal Mine Safety Regulation[J]. Industry and Mine Automation,2014,40(6):1-7.
    [21]
    孙继平. 2016年版《煤矿安全规程》监控与通信条款解析[J]. 工矿自动化,2016,42(5):1-8.

    SUN Jiping. Explanations for part of monitoring and communication of Coal Mine Safety Regulations of 2016 Edition[J]. Industry and Mine Automation,2016,42(5):1-8.
  • Related Articles

    [1]YUAN Jianwen. Underground personnel positioning based on TDOA/TOF hybrid technology[J]. Journal of Mine Automation, 2024, 50(S1): 39-42.
    [2]WU Wenzhen. Research on mine UWB optimized positioning method based on improved time synchronization[J]. Journal of Mine Automation, 2024, 50(S1): 34-38.
    [3]JIA Yutao, LI Guanhua, PAN Hongguang, CHEN Haijian, WEI Xuqiang, BAI Junming. A fusion positioning method for underground personnel based on UWB and PDR[J]. Journal of Mine Automation, 2024, 50(6): 96-102, 135. DOI: 10.13272/j.issn.1671-251x.2024010071
    [4]WANG Xinyue, QIAO Tiezhu, PANG Yusong, YAN Gaowei. Coal flow detection method for conveyor belt based on TOF depth image restoration[J]. Journal of Mine Automation, 2022, 48(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2021080018
    [5]LONG Nengzeng, YUAN Mei, AO Xuanjun, LI Xinling, ZHANG Ping. Prediction of coal and gas outburst intensity based on LLE-FOA-BP model[J]. Journal of Mine Automation, 2019, 45(10): 68-73. DOI: 10.13272/j.issn.1671-251x.2019010054
    [6]BAO Jianjun. Research on multi-source data fusion positioning algorithm for coal mine roadway[J]. Journal of Mine Automation, 2019, 45(8): 38-42. DOI: 10.13272/j.issn.1671-251x.17462
    [7]CHEN Kang, WANG Jun, BAO Jianjun, WANG Wei, XU Shouquan, CHEN Nan. TOF underground accurate positioning technology based on message multiplexing[J]. Journal of Mine Automation, 2019, 45(2): 1-5. DOI: 10.13272/j.issn.1671-251x.2018110062
    [8]LIU Xiao-wen, LIU Qiang, LV Mao-chao. Research of Embedded Soft PLC Operation System Based on Boot Loader Technology[J]. Journal of Mine Automation, 2011, 37(2): 64-67.
    [9]YAO Wan-ye, LONG Yang, ZHANG Dong-feng, YOU Yong-hua. Flight Time Measurement System of Laser Ranging Based on TDC-GP2[J]. Journal of Mine Automation, 2008, 34(6): 47-49.
    [10]ZHANG Wen-jie, WANG Yan-fe. Research of the Application of Chirp-UWB Wireless Communication Technology in Coal Mine Underground[J]. Journal of Mine Automation, 2007, 33(2): 7-10.
  • Cited by

    Periodical cited type(65)

    1. 王一飞, 陶珑, 王海稳, 廖成杰, 杨德松. 基于R2868型传感器的火焰信息传输系统. 自动化应用. 2025(10)
    2. 田新琦,蔡存军,瞿维迎,孟祥顺,路交通. 无线节点状态QC与资料品质关系研究与应用. 石油物探. 2024(04): 735-745 .
    3. 王立新,郭凰,杨佳宇,李爽,李储军,汪珂. 无线通信在结构健康监测系统的应用研究综述. 科学技术与工程. 2023(06): 2229-2241 .
    4. 李孟娇,孙彤,付建林,郭彬,张义伟. 基于LoRa技术的煤矿上隅角瓦斯监测系统设计. 机电工程技术. 2023(04): 236-239 .
    5. 曹现刚,张富强,史可欣. 基于ZigBee协议的矿用设备数据采集分站设计. 仪表技术与传感器. 2023(03): 65-70 .
    6. 杨军,张超,杨恢凡,郭一楠. 煤炭工业互联网技术研究综述. 工矿自动化. 2023(04): 23-32 . 本站查看
    7. 蒋鹏. 基于LoRa无线通信的煤矿矿井环境智能监测系统设计. 煤炭技术. 2023(07): 206-208 .
    8. 张孟魁. 巷道顶板离层动态监测系统的研发与应用. 能源技术与管理. 2023(05): 168-170 .
    9. 李彦廷,董飞,葛鲲鹏,蒋相余,王豪,赵子含,丰耀辉. 基于LoRa的矿工体征状态监测系统设计. 曲阜师范大学学报(自然科学版). 2023(04): 91-98 .
    10. 陈贤,周澍. 一种低功耗综采工作面人员定位系统设计. 煤矿安全. 2023(11): 218-221 .
    11. 张向阳,彭志豪,靳昊玥,侯钰慧,王帅,王雄. 基于LoRa与Socket的建筑能耗异构数据融合方法. 现代电子技术. 2022(06): 158-162 .
    12. 程晓涵,李宗吾,谢秉沁,阳辉,张涛,袁隆,赵林. 基于MEMS技术的矿用无线传感采集系统设计. 煤炭工程. 2022(03): 26-32 .
    13. 陈青. 无线节点式小孔径钻孔瓦斯抽采监测系统的研制. 工业仪表与自动化装置. 2022(03): 35-40 .
    14. 李萍丰,张金链,徐振洋,张兵兵,杨飞,李新. 基于LoRa物联的远程智能起爆系统研发. 金属矿山. 2022(07): 42-49 .
    15. 李华,王桂忠. 基于LoRa与CAN通信的液压支架压力传感器系统设计与试验. 煤矿机械. 2022(09): 18-21 .
    16. 乐强,张怀,袁久春,况伟,朱勇,何友才. 基于LoRa技术的节点仪监控系统研究. 石油管材与仪器. 2022(06): 32-37 .
    17. 赵贺,孙榕泽. 基于LoRa技术的机械设备监测终端设计. 自动化应用. 2022(08): 46-49+72 .
    18. 贺石锋,吴伶锡,陈亦昕,詹杰. 矿用机车嵌入式多功能遥控系统的设计与实现. 广州航海学院学报. 2022(04): 50-54 .
    19. 苗可彬,韩阳. LoRa射频芯片的无线激光甲烷传感器设计. 单片机与嵌入式系统应用. 2021(01): 61-64+68 .
    20. 谢铖. 基于LoRa技术的森林火灾预警与控制系统研究. 科技经济导刊. 2021(02): 25-26+70 .
    21. 周德胜. 基于LoRa的矿用无线通信系统设计. 煤矿安全. 2021(04): 170-173 .
    22. 严鸿鹏,胡可,胡龙源. Lora通信技术在故障指示器中的应用. 信息记录材料. 2021(03): 113-115 .
    23. 张文焱,韩立军,纪道荣,王生晖,初宗辉,杨庆禹. 发爆器与人员安全区闭锁系统设计与实现. 自动化技术与应用. 2021(05): 175-178 .
    24. 潘晓博. 基于LoRa的低功耗瓦斯浓度分布式监测系统设计. 工矿自动化. 2021(06): 103-108 . 本站查看
    25. 刘湛,张辉. 基于LoRa的电力数据采集系统设计与实现. 工业控制计算机. 2021(08): 23-25 .
    26. 皇甫姗姗,朱节中,杨再强,马玉翡. 中国温室环境控制研究进展. 中国农学通报. 2021(27): 125-131 .
    27. 朱海峰,杨锐. 基于LoRa技术的顶板监测系统的应用. 山东煤炭科技. 2021(09): 181-183 .
    28. 吴学兵. 基于LoRa技术的节点地震采集单元数据远传系统设计. 石油物探. 2021(S1): 1-4 .
    29. 张洪光,刘亭亭,吕秀莎,张莹,聂剑红,李青. 三维露天矿山场景中异构分簇组网协议研究. 工矿自动化. 2021(12): 68-74 . 本站查看
    30. 张新. 矿井无线数据传输现状分析与系统设计. 化工矿物与加工. 2020(01): 32-35+40 .
    31. 高鑫,凌强,张力,王世杰,许舒翔. 利用无线物联网技术实现智能电力计量. 信息技术. 2020(01): 163-166 .
    32. 谭爱平,刘春德,邓庆绪. 金属矿山风险监测物联网关键技术研究现状与发展趋势. 金属矿山. 2020(01): 26-36 .
    33. 张新. 基于SX1278的矿用低速远程监控通信平台研究. 矿业安全与环保. 2020(01): 70-74 .
    34. 马洋锦,付茂全,许志,李敬兆. 矿山信息物理融合系统多节点智联策略. 工矿自动化. 2020(03): 38-42+48 . 本站查看
    35. 陈晓晶. LoRa组网技术在胶带运输监控系统中的应用研究. 工矿自动化. 2020(04): 91-97 . 本站查看
    36. 薛光辉,赵贺,孙宗正. 基于LoRa技术的矿用无线复合传感器设计与实现. 煤炭工程. 2020(04): 166-170 .
    37. 杨洋,冯耀东,吕兆海,王九洲,赵振辉. 基于矿用4G网络实现DTU在煤矿基础层设备数据采集的应用. 能源科技. 2020(06): 19-22+30 .
    38. 文渊博,牛澳,毛夏煜,张桃靖,冯兴乐. 基于LoRa的分布式火灾监测报警系统的设计与实现. 物联网技术. 2020(08): 18-22+26 .
    39. 冯抒,廖忠智,王春雨. 基于LoRa的物联网茶叶溯源系统研究. 常州信息职业技术学院学报. 2020(04): 30-34 .
    40. 谢锦宣,张欢,葛烨明,赵宇轩,周严,王满意. 石化受限空间环境监测报警系统. 电子测量技术. 2020(17): 120-125 .
    41. 梁苗,邬凯,邵江,谢勇谋,蔡玮彬. LoRa技术在公路边坡监测中的应用研究. 地下空间与工程学报. 2020(S2): 1011-1016+1029 .
    42. 李起伟. 基于LoRa通信的无线液压支架压力传感器设计. 工矿自动化. 2020(12): 111-115 . 本站查看
    43. 吴玉厚,代业旭,赵德宏. LoRa技术在机械加工关键动态数据采集的应用研究. 组合机床与自动化加工技术. 2019(01): 134-137 .
    44. 张新. LoRa技术及其在煤矿中的应用分析. 煤炭工程. 2019(03): 79-82 .
    45. 张新. 基于LoRa技术的煤矿作业环境实时监测系统设计. 自动化仪表. 2019(03): 69-73 .
    46. 朱家骅,金光,江先亮. 基于低功耗广域物联网的旅游景区垃圾监测系统. 无线通信技术. 2019(01): 57-61 .
    47. 俞铭津,江莺,张梦琦,俞旭,段峥,许越. 基于物联网的电动车智能充电系统. 测控技术. 2019(05): 48-52 .
    48. 刁志刚,王宏宇. 基于LoRa的智能多级矿井监控终端设计. 煤矿机械. 2019(05): 180-182 .
    49. 郑贵林,汪体成. 基于LoRa的温室环境智能监控系统的设计. 江苏农业科学. 2019(10): 216-219 .
    50. 梁裕琪. 利用无线物联网技术实现智能电力计量. 电工技术. 2019(12): 91-93 .
    51. 李柏均. 一种瓦斯隧道掌子面环境参数无线监测装置的设计. 自动化与仪器仪表. 2019(08): 13-16 .
    52. 吴志远,张舸帆,张前咨. 无线通讯技术在工业自动化中的应用及发展. 软件. 2019(09): 188-191 .
    53. 韩团军,尹继武,赵增群,王楷. 基于LoRa技术的矿井数据监测系统的设计与研究. 现代电子技术. 2019(20): 160-163 .
    54. 李贵蔚. 智能电源管理系统的设计与实现. 福建电脑. 2019(10): 72-73 .
    55. 史发钊,尤星懿,李亚旋,刘淑婷. 基于LoRa的固定式罐道间距测量仪. 煤矿安全. 2018(09): 160-162 .
    56. 黄海飞. 基于LoRa无线通信方式的矿区作业设备运转参数在线监测系统. 煤矿机电. 2018(03): 98-100 .
    57. 何诚刚. 基于LoRa的无线监测系统设计. 山东农业大学学报(自然科学版). 2018(03): 528-530 .
    58. 江武志,罗玉文. 智慧校园之基于LoRa技术的环境检测分析系统. 物联网技术. 2018(04): 64-67 .
    59. 唐杰,刘星,宋林章,朱润平. 一种基于EFM32LGF330F256的无线LoRa仪表设计方案. 自动化博览. 2018(01): 74-76 .
    60. 郝大为. 矿井机电设备的安装与管理分析. 世界有色金属. 2018(14): 41+43 .
    61. 李光明,李海霞. LoRa通信技术在天然气井数据监测系统的应用. 电脑知识与技术. 2018(27): 237-240 .
    62. 曹霞,余笑,王家豪. 配电线路安全监测系统设计. 电视技术. 2018(09): 103-108+125 .
    63. 魏灵恩. LoRa通信技术在井下数据采集系统中的应用. 通信电源技术. 2018(09): 185-186 .
    64. 张新. 煤矿井下远程监控终端设计. 工矿自动化. 2018(12): 97-101 . 本站查看
    65. 宋延军,梁俊艳,王德志. 基于LoRa的10 kV架空线路故障监测系统设计与实现. 华北科技学院学报. 2017(05): 30-34 .

    Other cited types(42)

Catalog

    GUO Aijun, wlmlgaj@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (799) PDF downloads (52) Cited by(107)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return