HE Yaoyi, LIU Lijing, ZHAO Lichang, ZHOU Libing. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things[J]. Journal of Mine Automation, 2021, 47(6): 17-24. DOI: 10.13272/j.issn.1671-251x.17798
Citation: HE Yaoyi, LIU Lijing, ZHAO Lichang, ZHOU Libing. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things[J]. Journal of Mine Automation, 2021, 47(6): 17-24. DOI: 10.13272/j.issn.1671-251x.17798

Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things

More Information
  • The data acquisition of intelligent mine is based on ubiquitous perception and cannot be separated from the basic technical support of industrial Internet of things and big data. This paper analyzes the current situation of coal mine automation and monitoring data acquisition technology and platform, that is, the lack of identity marks of the perception node, data not being shared, system maintenance difficulties, system software smokestack construction and data fusion difficulties. This paper proposes the process and key technologies of intelligent mine basic information acquisition based on industrial Internet of things, including low-power ubiquitous perception technology, perception node identification and data sharing technology, long-term maintenance-free technology, data hierarchical interaction and fusion technology, etc. On this basis, the structure and design concept of the intelligent mine basic information platform based on private cloud deployment is proposed. Only one set of distributed software platform based on microservice technology can solve the problem of the collection, classification and storage, interaction, fusion and analysis of all kinds of automation data in the entire mine, and realizes the linkage control with the control execution devices. Through the establishment of a unified technology and service system, including a unified technology architecture and technology stack, unified master data, unified data storage mechanism, unified data model, unified authority and user interface mode, it is ensured that multiple businesses integration can be realized under the same software platform. By establishing a unified data acquisition mode based on the Internet of things, that is, loading and adapting different protocol drivers, data acquisition by professional systems of different manufacturers is realized. Through the establishment of a unified data processing and storage mechanism, data fusion and release mechanism, it is able to provide consistent data sources for intelligent mines.
  • Related Articles

    [1]JI Tianfu. Multi-source data fusion algorithm for coal mine based on fractional-order partial differentiation[J]. Journal of Mine Automation, 2024, 50(S2): 86-88.
    [2]MENG Guangrui, ZHANG Lu, ZHANG Rensheng. Design and implementation of data transmission consistency in coal mine safety monitoring system[J]. Journal of Mine Automation, 2023, 49(S1): 36-38,107.
    [3]SONG Bin, LIU Lili, ZHANG Lei, WANG Lei, DU Yuxin, ZHANG Ning. Coal mine equipment information management based on Data Matrix code[J]. Journal of Mine Automation, 2020, 46(11): 83-86. DOI: 10.13272/j.issn.1671 -251x.2020050059
    [4]BAO Jianjun. Research on multi-source data fusion positioning algorithm for coal mine roadway[J]. Journal of Mine Automation, 2019, 45(8): 38-42. DOI: 10.13272/j.issn.1671-251x.17462
    [5]XIANG Shiyao, CHEN Yijin, XU Dongjing. Management system of multi-source spatial data in open pit coal mine based on GIS[J]. Journal of Mine Automation, 2015, 41(12): 1-4. DOI: 10.13272/j.issn.1671-251x.2015.12.001
    [6]MA Caoyuan, LUO Yanfang, LI Chunxiao, CUI Lianhua. Fault line selection method based on local global consistency learning algorithm[J]. Journal of Mine Automation, 2015, 41(10): 32-36. DOI: 10.13272/j.issn.1671-251x.2015.10.009
    [7]LIU Kai, GUO Yongyi, WU Shiyue. Research of hierarchical multi-sensor data fusion model for coal mine safety monitoring[J]. Journal of Mine Automation, 2014, 40(6): 45-50. DOI: 10.13272/j.issn.1671-251x.2014.06.012
    [8]YAN Zhao-zhen, HE Yao-yi, DING Rui-qi. Research of Data Interaction Middleware Based on OPC UA[J]. Journal of Mine Automation, 2012, 38(12): 80-82.
    [9]JIN Qig, PAN Xue-tao, SHEN Yang, ZHANG Ya. Design of Remote Virtual Vibration Measurement System Based on Data Socket Technology[J]. Journal of Mine Automation, 2008, 34(5): 40-43.
    [10]ZHOU Jing. The Application of the Technology of Teradata Data Warehouse[J]. Journal of Mine Automation, 2005, 31(6): 97-99.
  • Cited by

    Periodical cited type(44)

    1. 雷浩,周德义. 基于工业物联网传感器数据的噪声消除方法研究. 物联网技术. 2025(05): 44-46+51 .
    2. 赵雨润,谢辉,谢光华,温初阳,刘沛鑫. 基于物联网技术的石油勘探作业许可云平台系统设计. 粘接. 2025(05): 123-126+130 .
    3. 逯富强,王荣林,朱文龙,代文亮. 基于5G的智能矿山系统构建与应用. 中国资源综合利用. 2025(04): 29-34 .
    4. 尚伟栋,王海力,张晓霞,王浩,徐华龙. 基于对象模型的煤矿数据采集融合共享系统. 工矿自动化. 2024(01): 17-24+34 . 本站查看
    5. 尹建辉. 基于工业互联网架构的煤矿瓦斯智能抽采管控系统设计. 工矿自动化. 2024(02): 28-34 . 本站查看
    6. 邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 .
    7. 张科学,吕鑫淼,郑庆学,王晓玲,李小磊,刘昇,刘伟,李鑫磊,闫星辰,许雯,尹宇航. 基于eNSP的智慧矿山网络防火墙技术研究. 中国煤炭. 2024(08): 94-103 .
    8. 蒋韫旭. 安全智能化监测系统在矿山中的应用. 山东煤炭科技. 2024(08): 153-157 .
    9. 王启飞,赵逸涵,刘帅,刘昊霖,孙英峰,李成武. 煤矿事故大数据驱动的风险治理模式研究综述. 中国安全科学学报. 2024(07): 28-37 .
    10. 江鹤,程德强,乙夫迪,汪鹏,崔文,寇旗旗. 新一代信息技术在智能矿山中的研究与应用综述. 工矿自动化. 2024(11): 1-16 . 本站查看
    11. 贺耀宜,代左朋,杨耀,屈世甲,张清,孙旭峰,张涛. 采煤工作面CH_4大样本数据感知关键技术及监测模式研究. 工矿自动化. 2024(11): 17-25+91 . 本站查看
    12. 黄友胜. 矿用定位通信一体化基站设计与实现. 煤矿安全. 2024(12): 229-235 .
    13. 李日平,刘晓明,马少维,陈省,郑永祥,周宇栋. 矿山计量检测数智化建设关键技术研究与应用. 铜业工程. 2024(06): 76-82 .
    14. 贾龙,朱浩,刘斌,田诚,杨皓月,李思雯. 孟村煤矿智能化综合管控平台建设及应用研究. 中国煤炭. 2024(12): 160-166 .
    15. 钟捷芳. 基于物联网的矿用换风机监测系统. 煤炭技术. 2023(01): 268-270 .
    16. 尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路. 煤田地质与勘探. 2023(01): 214-221 .
    17. 杨帆,张沛航,张馨以,代富平,李博,刘水,董伟龙. 金属矿尾矿库远程网络DCS安全预警测控系统. 现代矿业. 2023(02): 188-193 .
    18. 谭章禄,王美君,叶紫涵. 智能化煤矿数据治理体系与关键问题研究. 工矿自动化. 2023(05): 22-29 . 本站查看
    19. 贺耀宜,陈晓晶,郝振宇,丁磊,高文. 智能矿山低代码工业物联网平台设计. 工矿自动化. 2023(06): 141-148+174 . 本站查看
    20. 张灵展,颜雷. 工业物联网在矿区作业中的应用. 集成电路应用. 2023(07): 291-293 .
    21. 尹尚先,徐斌,尹慧超,曹敏,丁莹莹,梁满玉. 矿井水防治学科基本架构及内涵. 煤炭科学技术. 2023(07): 24-35 .
    22. 杨新广,于庆潭. 基于物联网技术的微型生化分析仪检测质量监控方法. 自动化技术与应用. 2023(10): 113-116+179 .
    23. 李永勤,王海山,白仕军. 安全集中监测系统在智能矿山中的应用. 工矿自动化. 2023(S2): 47-51 . 本站查看
    24. 王磊,黄晴,尚伟栋,苌延辉,张晓霞. 面向微服务架构的煤矿生产监控数据采集系统设计. 电子技术应用. 2023(12): 31-37 .
    25. 管小明,李宏俊. 基于支持可验证的物联网感知层信息加密仿真. 计算机仿真. 2023(11): 357-360+441 .
    26. 王赟,钟武剑. 基于iFIX的露天煤矿综合自动化开采方法研究. 自动化与仪器仪表. 2023(12): 214-217+222 .
    27. 杨帆,李博,刘水. 基于CJ2M PLC的磨矿设备IoT-DCS自动化系统的设计. 矿山机械. 2022(02): 26-31 .
    28. 杨帆,王钰涌,张沛航,李博,刘水. 基于Expert-PID算法的矿山球磨机物联网控制系统的设计. 计算机测量与控制. 2022(03): 120-125 .
    29. 任永珍. 基于物联网技术的饲料企业供应链信息服务平台构建. 饲料研究. 2022(06): 131-134 .
    30. 詹培军. 基于物联网的人工智能技术开发及实际应用. 工程技术研究. 2022(05): 36-38 .
    31. 刘翠. 基于MOOC的翻转课堂教学多元信息展示平台设计. 现代电子技术. 2022(11): 138-142 .
    32. 赵佰亭,庞猛,贾晓芬. 一种深立井井筒数据采集及分析系统设计. 工矿自动化. 2022(05): 118-122 . 本站查看
    33. 赵开功,张晓蕾,李曼,何盛军. 基于一体化运营综合能源企业智能应急救援技术研究. 中国安全生产科学技术. 2022(05): 235-240 .
    34. 梅舜豪,赵鹏,苏斌,邢书超. 石油工程企业信息化管理平台研究及应用. 石油化工自动化. 2022(03): 60-64 .
    35. 李国民,章鳌,贺耀宜,高文,黄综浏. 智能矿井多元监控数据集成关键技术研究. 工矿自动化. 2022(08): 127-130+146 . 本站查看
    36. 张立亚,李晨鑫,刘斌,姜玉峰. 矿山物联网区块链机制研究. 工矿自动化. 2022(08): 10-15 . 本站查看
    37. 崔卫锋,田野,李旭,史云,董博,张晓江. 煤矿综采工作面智能服务大数据决策平台. 煤矿机械. 2022(10): 193-195 .
    38. 刘道玉,程宝军. 基于位置服务的煤矿智能化综合管控平台研究与应用. 中国煤炭. 2022(09): 94-102 .
    39. 邵国荣. 基于智能矿山的煤矿机电技术管理创新. 能源与节能. 2022(12): 222-224 .
    40. 贺耀宜,高文,杨耀,荆诚,朱沙沙,陈醒. 智能矿山多元监控信息融合与联动研究. 工矿自动化. 2022(11): 11-19 . 本站查看
    41. 贾文琪,包翔宇,单成伟. 煤矿辅助运输管控一体化建设的问题与对策. 煤矿机电. 2022(06): 31-35 .
    42. 林逸朋. 基于物联网的井上井下联控体系构建. 陕西煤炭. 2021(05): 62-64+76 .
    43. 齐景嘉,李蕾. 论金融科技对实体经济的影响——基于上市公司股票数据的分析. 学术交流. 2021(07): 107-118 .
    44. 高利锋. 基于智能矿山的煤矿机电技术管理创新. 内蒙古煤炭经济. 2021(22): 86-88 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (202) PDF downloads (46) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return