留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Faster−YOLOv7的带式输送机异物实时检测

唐俊 李敬兆 石晴 杨萍 王瑞

唐俊,李敬兆,石晴,等. 基于Faster−YOLOv7的带式输送机异物实时检测[J]. 工矿自动化,2023,49(11):46-52, 66.  doi: 10.13272/j.issn.1671-251x.2023020037
引用本文: 唐俊,李敬兆,石晴,等. 基于Faster−YOLOv7的带式输送机异物实时检测[J]. 工矿自动化,2023,49(11):46-52, 66.  doi: 10.13272/j.issn.1671-251x.2023020037
TANG Jun, LI Jingzhao, SHI Qing, et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52, 66.  doi: 10.13272/j.issn.1671-251x.2023020037
Citation: TANG Jun, LI Jingzhao, SHI Qing, et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52, 66.  doi: 10.13272/j.issn.1671-251x.2023020037

基于Faster−YOLOv7的带式输送机异物实时检测

doi: 10.13272/j.issn.1671-251x.2023020037
基金项目: 国家自然科学基金资助项目(51874010);淮北市重大科技专项项目(Z2020004)。
详细信息
    作者简介:

    唐俊(1998—),男,安徽合肥人,硕士研究生,主要研究方向为嵌入式系统和深度学习,E-mail:1592267145@qq.com

    通讯作者:

    李敬兆(1964—),男,安徽淮南人,教授,博士,博士研究生导师,主要研究方向为智能控制,E-mail:254662583@qq.com

  • 中图分类号: TD56/67

Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7

  • 摘要: 基于深度学习的目标检测算法在异物检测中具有较好的识别效果,但模型内存需求大,检测速度慢;轻量化深度学习网络能够大幅减少模型内存需求,提升检测速度,但在井下弱光环境中检测精度低。针对上述问题,提出了一种基于Faster−YOLOv7的带式输送机异物实时检测算法。通过限制对比度自适应直方图均衡化算法(CLAHE)进行图像增强,提高弱光环境中异物对比度;基于Mobilenetv3对YOLOv7主干网络进行轻量化设计,减少YOLOv7模型的计算量、参数量;添加有效通道注意力机制,缓解因特征通道数减少而导致的高层特征信息丢失问题;采用Alpha−IoU作为损失函数提高异物检测精度。实验结果表明:① Faster−YOLOv7的初始损失为0.143,最终稳定在0.039左右。② Faster−YOLOv7的检测速度可达42帧/s,较YOLOv5、YOLOv7分别提升了17,20帧/s;Faster−YOLOv7内存为14 MiB,较YOLOv5、YOLOv7分别降低了29,57 MiB;检测准确率达91.3%,较YOLOv5提升了8.8%。③ 将SSD、YOLOv5、轻量化YOLOv7、Faster−YOLOv7目标检测算法应用到煤矿井下带式输送机运煤图像及视频中,发现SSD在视频检测时发生了漏检现象,YOLO系列模型均有效地识别出待测异物,且Faster−YOLOv7识别结果的置信度更高。

     

  • 图  1  带式输送机异物实时检测流程

    Figure  1.  Real-time detection process foreign body on belt conveyor

    图  2  CLAHE裁剪再分配过程

    Figure  2.  CLAHE tailoring redistribution process

    图  3  图像增强效果

    Figure  3.  Image enhancement effect

    图  4  Faster−YOLOv7网络结构

    Figure  4.  Faster-YOLOv7 network structure

    图  5  ELAN结构

    Figure  5.  ELAN structure

    图  6  Bneck模块结构

    Figure  6.  Bneck module structure

    图  7  ECA模块结构

    Figure  7.  ECA module structure

    图  8  损失函数曲线

    Figure  8.  Loss function curve

    图  9  不同模型检测结果

    Figure  9.  Test results of different models

    表  1  图像增强评价结果

    Table  1.   Evaluation results of image enhancement

    评价指标原图CLAHE
    Brenner函数值81.447152.479
    Energy of Gradient函数值55.31199.494
    Roberts函数值103.655186.282
    下载: 导出CSV

    表  2  检测模型性能

    Table  2.   Detection model performance

    模型 检测速度/(帧·s−1 模型内存/MiB 准确率/%
    YOLOv5 25 43 82.5
    YOLOv7 22 71 94.5
    Faster−YOLOv7 42 14 91.3
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Ablation test results

    改进策略 准确率/% 检测速度/(帧·s−1
    CLAHE ECA Alpha−IoU
    × × × 83.4 53
    × × 85.8 49
    × × 85.9 46
    × × 85.1 48
    91.3 42
    下载: 导出CSV
  • [1] 任志玲,朱彦存. 改进CenterNet算法的煤矿皮带运输异物识别研究[J]. 控制工程,2023,30(4):703-711.

    REN Zhiling,ZHU Yancun. Research on foreign object detection of coal mine belt transportation with improved CenterNet algorithm[J]. Control Engineering of China,2023,30(4):703-711.
    [2] 杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026
    [3] 杜紫薇,周恒,李承阳,等. 面向深度卷积神经网络的小目标检测算法综述[J]. 计算机科学,2022,49(12):205-218. doi: 10.11896/jsjkx.220500260

    DU Ziwei,ZHOU Heng,LI Chengyang,et al. Small object detection based on deep convolutional neural networks:a review[J]. Computer Science,2022,49(12):205-218. doi: 10.11896/jsjkx.220500260
    [4] 吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.

    WU Shoupeng,DING Enjie,YU Xiao. Foreign body identificati on of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
    [5] 郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [6] 任国强,韩洪勇,李成江,等. 基于FastYOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.

    REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on FastYOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
    [7] 陈永,卢晨涛,王镇. 基于轻量级网络的铁路感兴趣区域异物侵限检测[J]. 吉林大学学报(工学版),2022,52(10):2405-2418.

    CHEN Yong,LU Chentao,WANG Zhen. Detection of foreign object intrusion in railway region of interest based on lightweight network[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(10):2405-2418.
    [8] 杨锦辉,李鸿,杜芸彦,等. 基于改进YOLOv5s的轻量化目标检测算法[J]. 电光与控制,2023,30(2):24-30. doi: 10.3969/j.issn.1671-637X.2023.02.005

    YANG Jinhui,LI Hong,DU Yunyan,et al. A lightweight object detection algorithm based on improved YOLOv5s[J]. Electronics Optics & Control,2023,30(2):24-30. doi: 10.3969/j.issn.1671-637X.2023.02.005
    [9] 胡璟皓,高妍,张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化,2021,47(6):57-62,90. doi: 10.13272/j.issn.1671-251x.2021020041

    HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62,90. doi: 10.13272/j.issn.1671-251x.2021020041
    [10] 陈宇梁,董绍江,孙世政,等. 改进YOLOv5的弱光水下生物目标检测算法[J/OL]. 北京航空航天大学学报:1-13[2023-01-11]. https://doi.org/10.13700/j.bh.1001-5965.2022.0322.

    CHEN Yuliang,DONG Shaojiang,SUN Shizheng,et al. Improved YOLOv5 low light underwater biological target detection algorithm [J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-13[2023-01-11]. https://doi.org/10.13700/j.bh.1001-5965.2022.0322.
    [11] WANG C Y,BOCHKOVSKIY Z,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.
    [12] 戚玲珑,高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程,2023,49(1):41-48.

    QI Linglong,GAO Jianling. Small object detection based on improved YOLOv7[J]. Computer Engineering,2023,49(1):41-48.
    [13] 成浪,敬超. 基于改进YOLOv7的X线图像旋转目标检测[J]. 图学学报,2023,44(2):324-334.

    CHENG Lang,JING Chao. X-ray image rotating object detection based on improved YOLOv7[J]. Journal of Graphics,2023,44(2):324-334.
    [14] DING Xiaohan,ZHANG Xiangyu,MA Ningning,et al. RepVGG:making VGG-style convnets great again[J]. Computer Vision and Pattern Recognition,2021. DOI: 10.1109/CVPR46437.2021.01352.
    [15] 赵元龙,单玉刚,袁杰. 改进YOLOv7与DeepSORT的佩戴口罩行人跟踪[J]. 计算机工程与应用,2023,59(6):221-230. doi: 10.3778/j.issn.1002-8331.2210-0479

    ZHAO Yuanlong,SHAN Yugang,YUAN Jie. Wearing mask pedestrian tracking based on improved YOLOv7 and DeepSORT[J]. Computer Engineering and Applications,2023,59(6):221-230. doi: 10.3778/j.issn.1002-8331.2210-0479
    [16] 辛世澳,葛海波,袁昊,等. 改进YOLOv7的轻量化水下目标检测算法[J/OL]. 计算机工程与应用:1-16[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1722.024.html.

    XIN Shi'ao,GE Haibo,YUAN Hao,et al. lmproved YOLOv7's lightweight underwater target detection algorithm [J/OL]. Computer Engineering and Applications:1-16[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1722.024.html.
    [17] HOWARD A,SANDLER M,CHU G,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision (ICCV),Seoul,2019:1314-1324.
    [18] WANG Qilong,WU Banggu,ZHU Pengfei,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11534-11542.
    [19] 苑朝,赵亚冬,张耀,等. 基于YOLO轻量化的多模态行人检测算法[J/OL]. 图学学报:1-12[2023-01-30]. http://kns.cnki.net/kcms/detail/10.1034.T.20231026.1644.002.html.

    YUAN Chao,ZHAO Yadong,ZHANG Yao,et al. Base on YOLO lightweight multi-modal pedestrian detection algorithm [J/OL]. Journal of Graphics:1-12[2023-01-30]. http://kns.cnki.net/kcms/detail/10.1034.T.20231026.1644.002.html.
    [20] 王灏文,朴燕,王鈅,等. 改进YOLOv7的无明火森林烟雾检测算法[J/OL]. 计算机工程与应用:1-11[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1637.020.html.

    WANG Haowen,PU Yan,WANG Yue,et al. Forest smoke detection method without open flames based on improved YOLOv7 [J/OL]. Computer Engineering and Applications:1-11[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1637.020.html.
    [21] 高新阳,魏晟,温志庆,等. 改进YOLOv5轻量级网络的柑橘检测方法[J]. 计算机工程与应用,2023,59(11):212-221.

    GAO Xinyang,WEI Sheng,WEN Zhiqing,et al. Citrus detection method based on improved YOLOv5 lightweight network[J]. Computer Engineering and Applications,2023,59(11):212-221.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  57
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-11-05
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回