Leakage detection and prevention technology for goaf areas in pillarless coal mining at Xinji No. 1 Mine
-
摘要:
针对无煤柱开采Y型通风工作面采空区与相邻采空区漏风自燃问题,采用能位测定和示踪技术相结合的方法,对新集一矿360606工作面采空区群各密闭墙漏风进行检测。结果表明:3608(06)采区进风系统的能位高于回风系统,360606工作面采空区与上覆采空区和其相邻采空区均存在漏风通道,−550 m西翼胶带石门(北)密闭墙是主要漏风源,−415 m西大巷密闭墙、−415 m辅助回风上山密闭墙、−415 m井底车场绕道密闭墙、360608运输巷密闭墙、360606回风隅角和360606工作面柔模墙取气孔为漏风汇。根据360606工作面及其与相邻采空区漏风通道的特点,提出注氮灌浆堵漏、设置风帘等防治措施。应用结果表明:针对360606工作面采空区漏风进行综合防治后,沿空留巷与回风侧采空区CO及O2浓度均处于正常范围,有效控制了360606工作面采空区漏风,保障了360606工作面的安全生产。
Abstract:To address the issues of leakage and spontaneous combustion in goaf areas of the Y-type ventilation working face pillarless extraction, as well as the adjacent old goaf areas, a combined method of energy potential measurement and tracer technology was used to detect air leakage in the sealing walls of the goaf areas of the 360606 working face at Xinji No. 1 Mine. The results showed that the energy potential of the intake system in the 3608 (06) mining area was higher than that of the return air system. There were leakage channels between the 360606 working face goaf, the overlying goaf, and adjacent goaf areas. The sealing wall of the −550 m West Wing Belt Stone Gate (North) was the main source of air leakage. The leakage sink occurred at the −415 m West Main Tunnel sealing wall, the −415 m Auxiliary Return Air Mountain sealing wall, the −415 m Mine Bottom Car Track Detour sealing wall, the 360608 Transport Tunnel sealing wall, the 360606 Return Air Corner, and the air inlet holes of the 360606 working face flexible model wall. Based on the characteristics of the 360606 working face and its leakage channels with adjacent goaf areas, measures such as nitrogen injection grouting for sealing and the installation of wind curtains were proposed. Application results indicate that after comprehensive prevention and control measures were implemented for the leakage in the 360606 working face goaf, the CO and O2 concentrations in the air in the retention roadway and return air side goaf areas remained within the normal range, effectively controlling the leakage and ensuring safe production in the 360606 working face.
-
-
表 1 新集一矿西区能位测点信息
Table 1 Energy potential measurement point information in the western area of Xinji No.1 Mine
测点编号 测点名称 8 −415 m西大巷密闭墙 9 −415 m辅助回风上山密闭墙 10 −415 m井底车厂密闭墙 12 360808工作面运输巷密闭墙 13 360802工作面运输巷密闭墙 14 360804回风联巷密闭墙 15 3608采空区轨道上(下)山密闭墙 17 −550 m西胶带大巷密闭墙 19 360804工作面进风巷密闭墙 表 2 新集一矿西区能位测定结果
Table 2 Energy potential measurement results in the western area of Xinji No.1 Mine
测段 巷道名称 支护
形式断面
形状测段阻
力/Pa测段风
量/(m3·s−1)测段
长度/m百米阻
力损失能位
差/Pa静压
差/Pa风阻 周长/m 阻力
系数备注 30—31 360606工作面运输巷 锚喷 梯形 28.7 1.9 820 20 470 −337 0.2025 16.13 0.0521 有门框 31—32 工作面 锚喷 梯形 22.0 1.6 265 38 −647 717 0.2093 15.68 0.1445 工作面支架 32—12 360606工作面回风巷 锚喷 梯形 36.0 1.7 850 23 −189 338 0.1480 19.31 0.0901 有门框 12—33 西区−700~−620 m
运输斜巷锚喷 梯形 48.8 7.1 667 60 606 93 0.1666 10.88 0.0073 14—33测段断面小,
风速超限33—34 3608采区回风上山 锚喷 梯形 101.2 9.4 240 66 −39 72 0.0155 13.66 0.0059 风桥 34—35 −680 西区回风石门 锚喷 U形 106.0 10.6 150 75 −203 373 0.0100 13.15 0.0051 风速大,有小断面 35—10 西三回风下山 锚喷 U形 93.3 7.1 1460 34 − 3144 3814 0.0564 15.06 0.0058 有冒顶,小断面 10—8 井底车场绕道 锚喷 U形 32.7 2.6 85 18 0 50 0.0141 14.80 0.0227 正常巷道 15—34 36采区避难硐室 锚喷 U形 106.2 7.0 80 966 −72 915 0.0686 16.26 0.1880 有风门 13—33 西区−700~−620 m
运输斜巷锚喷 梯形 26.1 3.7 90 569 48 519 0.7503 11.04 0.2635 有控风设施 表 3 工作面及临近采空区群测点能位计算结果
Table 3 Calculated energy potential results at measurement points in working face and adjacent goaf areas
测点位置 序号 密闭墙编号/测段位置 测试地点 能位/Pa 密闭墙 8 C−13−418 −415 m西大巷 379 9 C−13−417/C−13−147 −415 m辅助回风上山 379 10 C−13−419 −415 m井底车场绕道 379 12 C−08−144 360808工作面运输巷 1540 13 C−08−131 360802工作面运输巷 1254 14 C−08−134 360804工作面回风联巷 1264 15 C−13−147/C−08−147 3608采区轨道上(下)山 1756 360606工作面 30 运输巷 运输巷外口 2000 31 运输巷 运输巷里口 1833 32 回风巷 回风巷里口 1731 12 回风巷 回风巷外口 1540 表 4 取样点最大漏风速度
Table 4 Maximum air leakage velocity at sampling points
取样点 距离/m 耗时/min 速度/(m·min−1) 1号 1 950 120 16.25 2号 1 980 540 3.67 3号 2 030 60 33.9 4号 1 800 1 560 1.15 5号 1 400 1 500 0.93 6号 1 000 1 560 0.64 -
[1] 聂士斌,戴广龙. 基于能位测定和SF6示踪技术对谢桥煤矿1321(3)工作面采空区及小煤柱漏风状态研究[C]//刘峰,刘国林. 第十届全国煤炭工业生产一线青年技术创新文集. 北京:煤炭工业出版社,2016:274-280. NIE Shibin,DAI Guanglong. Research on the air leakage status of the goaf and small coal pillars in the 1321 (3) working face of Xieqiao Coal Mine based on energy position measurement and SF6 tracer technology [C]//LIU Feng,LIU Guolin. The 10th national coal industry production frontline youth technology innovation collection. Beijing:China Coal Industry Publishing House,2016:274-280.
[2] 江卫. SF6示踪技术与能位测定联合检测复杂采空区漏风[J]. 煤炭科学技术,2003,31(8):9-11. JIANG Wei. SF6 tracking technology and energy level detecting combined to detect and measure ventilation leakage in complicated goaf[J]. Coal Science and Technology,2003,31(8):9-11.
[3] 姜亦武,杨俊生,赵鹏翔,等. 倾斜高瓦斯煤层抽采条件下采空区漏风规律数值模拟[J]. 西安科技大学学报,2021,41(1):46-54. JIANG Yiwu,YANG Junsheng,ZHAO Pengxiang,et al. Numerical simulation of air leakage law in goaf under gas extraction of inclined high gas coal seam[J]. Journal of Xi'an University of Science and Technology,2021,41(1):46-54.
[4] 徐金毅. 红柳林煤矿综掘面长压短抽式通风控除尘技术研究[D]. 淮南:安徽理工大学,2024. XU Jinyi. Research on the risk control and dust removal technology of long push-short pull ventilation at the excavation face of Hongliulin Coal Mine[D]. Huainan:Anhui University of Science & Technology,2024.
[5] 刘国忠,李国华,王正辉,等. SF6示踪气体连续释放法在采空区漏风检测中的应用[J]. 煤矿安全,2011,42(9):114-117. LIU Guozhong,LI Guohua,WANG Zhenghui,et al. Application of SF6 tracer gas continuous release method in goaf air leakage detection[J]. Safety in Coal Mines,2011,42(9):114-117.
[6] 张曦,戴广龙,聂士斌,等. 应用能位测定法和SF6示踪技术检测孤岛工作面小煤柱漏风状态[J]. 矿业安全与环保,2016,43(5):41-44. ZHANG Xi,DAI Guanglong,NIE Shibin,et al. Air leakage measurement of narrow coal pillar in island working face by energy level and SF6 tracer test[J]. Mining Safety & Environmental Protection,2016,43(5):41-44.
[7] 王海燕,冯超,耿兰,等. 基于能位测定和示踪检测法的地下煤火漏风状态研究[J]. 中国安全生产科学技术,2014,10(1):118-123. WANG Haiyan,FENG Chao,GENG Lan,et al. Study on air leakage in underground coal fire based on energy level and tracer test[J]. Journal of Safety Science and Technology,2014,10(1):118-123.
[8] 李健威. 正压通风对浅埋煤层漏风影响及漏风综合治理技术研究[J]. 煤炭科学技术,2023,51(10):155-162. LI Jianwei. Study on the influence of positive pressure ventilation on air leakage in shallow coal seam and comprehensive treatment technology of air leakage[J]. Coal Science and Technology,2023,51(10):155-162.
[9] 田垚,杨成昊,孙全吉,等. U型通风工作面采空区漏风规律研究[J]. 煤炭工程,2020,52(12):132-136. TIAN Yao,YANG Chenghao,SUN Quanji,et al. Air leakage law in goaf of the working face using U-type ventilation[J]. Coal Engineering,2020,52(12):132-136.
[10] 郭艳飞,郝殿,李学臣,等. 沿空留巷工作面“一进两回” 通风方式下采空区漏风规律研究[J]. 矿业安全与环保,2022,49(6):46-51. GUO Yanfei,HAO Dian,LI Xuechen,et al. Study on air leakage law of goaf under "one inlet and two return" ventilation in gob-side entry retaining working face[J]. Mining Safety & Environmental Protection,2022,49(6):46-51.
[11] 饶孜. SF6示踪气体漏风测试技术在白皎煤矿的应用[J]. 煤矿安全,2018,49(6):122-125. RAO Zi. Application of SF6 tracer gas leakage test technology in Baijiao Coal Mine[J]. Safety in Coal Mines,2018,49(6):122-125.
[12] 付晓光,徐士龙,祝传军. 综采工作面采空区漏风规律分析及治理措施[J]. 山东煤炭科技,2024,42(7):57-61,71. FU Xiaoguang,XU Shilong,ZHU Chuanjun. Analysis and governance measures of air leakage law in goaf of fully mechanized mining face[J]. Shandong Coal Science and Technology,2024,42(7):57-61,71.
[13] 迟克勇,张振乾. 近距离煤层联合开采自然发火规律研究[J]. 中国煤炭,2019,45(7):62-67. CHI Keyong,ZHANG Zhenqian. Study on spontaneous combustion law during combined mining of close-distance coal seams[J]. China Coal,2019,45(7):62-67.
[14] 叶庆树,戴广龙,李鹏,等. 基于双示踪技术浅埋煤层采空区地表漏风规律研究[J]. 煤炭工程,2020,52(7):83-87. YE Qingshu,DAI Guanglong,LI Peng,et al. Air leakage law of surface above shallow coal seam goaf based on dual-element tracing[J]. Coal Engineering,2020,52(7):83-87.
[15] 万磊,孙茂如,赵吉诚,等. 近距离煤层复杂采空区漏风规律及防控技术研究[J]. 中国矿业,2022,31(1):114-120. WAN Lei,SUN Maoru,ZHAO Jicheng,et al. Study on air leakage law and prevention and control technology of complex goaf in close distance coal seam[J]. China Mining Magazine,2022,31(1):114-120.
[16] 郭英. 硫磺沟煤矿采空区瓦斯与煤自燃灾害协同防控技术研究[D]. 西安:西安科技大学,2017. GUO Ying. Collaborative prevention technology of coal spontaneous combustion and gas in gob of Liuhuanggou Coal Mine[D]. Xi'an:Xi'an University of Science and Technology,2017.
[17] 黄震. 新集一矿多层复合采空区煤炭自燃防治技术研究[D]. 淮南:安徽理工大学,2019. HUANG Zhen. Research on coal spontaneous combustion prevention technology in multi-layer compound goaf of Xinji No. 1 Mine[D]. Huainan:Anhui University of Science & Technology,2019.
[18] 姜秀雷. 沙曲矿多风井系统分析优化与研究[D]. 淮南:安徽理工大学,2013. JIANG Xiulei. Shaqu Mine multi-shaft system optimization and analysis[D]. Huainan:Anhui University of Science & Technology,2013.
[19] 董永鑫. 新集一矿南东翼煤层群开采采空区自然发火防治技术研究[D]. 淮南:安徽理工大学,2017. DONG Yongxin. Study on control technology for spontaneous combustion in gob of coal seams in southeast area of Xinji No. 1 Coal Mine[D]. Huainan:Anhui University of Science & Technology,2017.
[20] 张航. 谢桥矿11煤留小煤柱开采煤炭自燃防治技术研究[D]. 淮南:安徽理工大学,2016. ZHANG Hang. Study on 11 Coal Mine Xieqiao left pillar mining of coal spontaneous combustion prevention and control technology[D]. Huainan:Anhui University of Science & Technology,2016.
[21] 唐德馨. 矿井漏风多元示踪剂优选研究[D]. 淮南:安徽理工大学,2019. TANG Dexin. Research on optimum selection of multi-tracer for for air leakage in coal mine[D]. Huainan:Anhui University of Science & Technology,2019.
[22] 张景钢, 刘鹏飞, 项小娟, 等. 基于示踪气体的不同灾变时期的风流实验研究[J]. 山西煤炭,2024,44(3):67-72. ZHANG Jinggang, LIU Pengfei, XIANG Xiaojuan, et al. Experimental study of airflow in different disaster periods based on tracer gas[J]. Shanxi Coal,2024,44(3):67-72.
[23] 邢吉强. 示踪方法在煤矿通风防灭火中的运用[J]. 矿业装备,2024(4):61-63. XING Jiqiang. Application of tracer method in mine ventilation and fire prevention[J]. Mining Equipment,2024(4):61-63.
[24] 杨晓敏. 巷道透采空区煤自燃火灾治理技术研究[D]. 西安:西安科技大学,2012. YANG Xiaomin. Research on coal spontaneous combustion fire disaster management technology in mined-out area traversed by roadway[D]. Xi′an:Xi′an University of Science and Technology,2012.
[25] 刘华. 矿井煤层瓦斯预抽诱导钻孔周边煤体自燃的演化规律[D]. 西安: 西安科技大学, 2023. LIU Hua. Evolution law of coal spontaneous combustion around the borehole induced by coal seam gas pre-drainage in mine[D]. Xi’an: Xi’an University of Science and Technology, 2023.
-
期刊类型引用(21)
1. 赵冬. 基于机器视觉的煤矿井下火灾检测方法. 自动化应用. 2025(01): 101-104+107 . 百度学术
2. 孙继平,李小伟. 基于图像顺滑度的矿井外因火灾识别及抗干扰方法研究. 中国矿业大学学报. 2025(01): 215-226 . 百度学术
3. 耿哲,张德胜. 煤矿井下区域防灭火系统的设计. 矿山机械. 2025(03): 50-55 . 百度学术
4. 孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 . 百度学术
5. 王炎林,裴晓东,王凯,徐光. 基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究. 工矿自动化. 2025(03): 122-130 . 本站查看
6. 胡纪年,李雨成,李俊桥,张巍. 基于CNN的矿井外因火灾火源定位方法研究. 中国安全生产科学技术. 2024(03): 134-140 . 百度学术
7. 李海龙. 基于机器视觉的煤矿用输送带跑偏检测方法. 矿山机械. 2024(05): 29-33 . 百度学术
8. 徐晓敏,朱正磊,刘鑫,郭青玄,赵一夫. 基于无人机监测的电力火灾起火点定位方法研究. 电力大数据. 2024(03): 50-56 . 百度学术
9. 孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 . 百度学术
10. 于博,陈光波. 基于组合赋权-物元可拓模型的煤矿内因火灾安全评价. 煤矿安全. 2023(02): 61-70 . 百度学术
11. 李光宇,李守军,缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法. 矿业安全与环保. 2023(02): 82-87 . 百度学术
12. 程开. 选煤厂机械搅拌式浮选机智能控制系统的研究. 煤炭加工与综合利用. 2023(06): 6-12 . 百度学术
13. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
14. 郭玉柱. 斜沟煤矿火灾应急隔离系统设计研究. 煤. 2022(02): 13-16+29 . 百度学术
15. 范涌高,周怡敏,张玉玺,闫宋锟,朱丽娜. 井下复合定位系统框架. 计算机测量与控制. 2022(02): 201-206 . 百度学术
16. 孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 . 百度学术
17. 孙继平,李小伟,徐旭,张森森. 矿井电火花及热动力灾害紫外图像感知方法研究. 工矿自动化. 2022(04): 1-4+95 . 本站查看
18. 王勇,胡斌,康渴楠,孔庆东,葛小菡,李辰阳. 智能传感器在消防装备中的应用现状分析. 中国安全科学学报. 2022(S1): 184-188 . 百度学术
19. 高懿伟,郭志国,张俊,郑彪华. 我国金属矿山热动力灾害防治技术研究现状与展望. 金属矿山. 2022(12): 196-204 . 百度学术
20. 肖国强,范新丽,马砺,骆伟,吴明明. 矿井火灾环境信息动态感知与应急隔离系统. 工矿自动化. 2021(09): 65-69 . 本站查看
21. 刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 . 百度学术
其他类型引用(11)