Study on the perception and alarm method of coal mine rock burst and coal and gas outburst
-
摘要: 提出了基于温度的冲击地压和煤与瓦斯突出感知报警方法:使用红外热像仪等监测物体温度,使用甲烷传感器监测环境甲烷浓度;当物体温度高于煤矿井下环境温度和已暴露煤岩温度,并且高于环境温度和已暴露煤岩温度的物体数量较多、体积和面积较大,则判定发生冲击地压、煤与瓦斯突出、矿井火灾或瓦斯和煤尘爆炸事故;进一步判别高温物体温度,若大于设定阈值,则判定发生矿井火灾或瓦斯和煤尘爆炸事故,反之,则判定发生冲击地压或煤与瓦斯突出事故;进一步分析甲烷浓度变化,若甲烷浓度迅速升高,则判定发生煤与瓦斯突出事故,反之,则判定发生冲击地压事故。提出了基于速度的冲击地压和煤与瓦斯突出感知报警方法:使用激光雷达、毫米波雷达、超声波雷达、双目视觉摄像机等监测物体移动速度,使用甲烷传感器监测环境甲烷浓度;当物体移动速度不小于设定阈值时,则判定发生冲击地压、煤与瓦斯突出或瓦斯和煤尘爆炸事故;进一步判别速度异常物体的数量、体积和面积,若速度异常物体的数量较少、体积和面积较小,则判定发生瓦斯和煤尘爆炸事故,若速度异常物体的数量较多、体积和面积较大,则判定发生冲击地压或煤与瓦斯突出事故;进一步分析甲烷浓度变化,若甲烷浓度迅速升高,则判定发生煤与瓦斯突出事故,反之,则判定发生冲击地压事故。提出了多信息融合的冲击地压和煤与瓦斯突出感知报警及灾源判定方法:监测并融合温度、速度、加速度、掩埋深度、声音、气压、风速、风向、粉尘、甲烷浓度、设备状态、微震、地音、应力、红外辐射、电磁辐射、图像等多种信息,感知冲击地压和煤与瓦斯突出;通过不同位置参数变化的幅度、先后时序关系及传感器损坏情况,判定灾源。Abstract: The paper puts forward a perception and alarm method of rock burst and coal and gas outburst based on temperature. The infrared thermal imager is used to monitor the temperature of objects, and the methane sensor is used to monitor the concentration of ambient methane. When the temperature of the objects is higher than the ambient temperature of the coal mine and the temperature of the exposed coal rock, and the number, volume and area of objects that are higher than the ambient temperature and the temperature of the exposed coal rock are large, it is determined that rock burst, coal and gas outburst, mine fire or gas and coal dust explosion accidents have occurred. The temperature of the high temperature object is further determine. If it is greater than the set threshold, it is determined that a mine fire or a gas and coal dust explosion accident has occurred. Otherwise, it is determined that a rock burst or a coal and gas outburst accident has occurred. The change of methane concentration is further analyzed. If the methane concentration rises rapidly, it is determined that a coal and gas outburst accident has occurred. Otherwise, it is determined that a rock burst accident has occurred. The paper puts forward a perception and alarm method of rock burst and coal and gas outburst based on velocity. The lidar, millimeter-wave radar, ultrasonic radar, binocular vision camera are used to monitor the moving speed of objects. The methane sensors are applied to monitor the concentration of ambient methane. When the moving speed of the object is not less than the set threshold, it is determined that rock burst, coal and gas outburst or gas and coal dust explosion accident have occurred. The number, volume and area of objects with abnormal velocity is further determined. If the number of objects with abnormal velocity is small, the volume and area are small, it is determined that a gas and coal dust explosion accident has occurred. If the number of objects with abnormal velocity is large, the volume and area are large, it is determined that a rock burst or a coal and gas outburst accident has occurred. The changes of methane concentration are further analyzed. If the methane concentration increases rapidly, it is determined that a coal and gas outburst accident has occurred. Otherwise, it is determined that a rock burst accident has occurred. A multi-information fusion method for perception, alarming and judging disaster source of rock burst and coal and gas outburst is proposed. The method monitors and integrates various information such as temperature, speed, acceleration, burial depth, sound, air pressure, wind speed, wind direction, dust, methane concentration, equipment status, micro-seismic, geosound, stress, infrared radiation, electromagnetic radiation and images so as to monitor the pressure and coal and gas outbursts. The source of the disaster is determined through the magnitude of parameter changes at different locations, the sequence relationship and sensor damage.
-
Keywords:
- rock burst /
- coal and gas outburst /
- gas and coal dust explosion /
- mine fire /
- disaster perception /
- disaster alarm
-
-
-
[1] 孙继平, 钱晓红. 2004—2015年全国煤矿事故分析[J]. 工矿自动化,2016,42(11):1-5. SUN Jiping, QIAN Xiaohong. Analysis of coal mine accidents in China during 2004-2015[J]. Industry and Mine Automation,2016,42(11):1-5.
[2] 孙继平. 煤矿事故分析与煤矿大数据和物联网[J]. 工矿自动化,2015,41(3):1-5. SUN Jiping. Accident analysis and big data and Internet of things in coal mine[J]. Industry and Mine Automation,2015,41(3):1-5.
[3] 孙继平, 钱晓红. 煤矿事故与应急救援技术装备[J]. 工矿自动化,2016,42(10):1-5. SUN Jiping, QIAN Xiaohong. Coal mine accident and emergency rescue technology and equipment[J]. Industry and Mine Automation,2016,42(10):1-5.
[4] 孙继平, 钱晓红. 煤矿重特大事故应急救援技术及装备[J]. 煤炭科学技术,2017,45(1):112-116. SUN Jiping, QIAN Xiaohong. Emergency rescue technology and equipment of mine extraordinary accidents[J]. Coal Science and Technology,2017,45(1):112-116.
[5] 孙继平. 煤与瓦斯突出报警方法[J]. 工矿自动化,2014,40(11):1-5. SUN Jiping. Alarm methods of coal and gas outburst[J]. Industry and Mine Automation,2014,40(11):1-5.
[6] 孙继平, 余星辰. 基于声音识别的煤矿重特大事故报警方法研究[J]. 工矿自动化,2021,47(2):1-5. SUN Jiping, YU Xingchen. Research on alarm method of coal mine extraordinary accidents based on sound recognition[J]. Industry and Mine Automation,2021,47(2):1-5.
[7] 孙继平, 曹玉超. 基于图像纹理特征的矿井水灾感知方法[J]. 煤炭学报,2019,44(9):2936-2944. SUN Jiping, CAO Yuchao. Coal-mine flood perception method based on image texture features[J]. Journal of China Coal Society,2019,44(9):2936-2944.
[8] 孙继平, 靳春海, 曹玉超. 基于视频图像的矿井水灾识别及趋势预测方法研究[J]. 工矿自动化,2019,45(7):1-4. SUN Jiping, JIN Chunhai, CAO Yuchao. Research on mine flood identification and trend prediction method based on video image[J]. Industry and Mine Automation,2019,45(7):1-4.
[9] 孙继平, 靳春海. 矿井水灾感知与水源判定方法研究[J]. 工矿自动化,2019,45(4):1-5. SUN Jiping, JIN Chunhai. Research on methods of mine flood perception and water source determination[J]. Industry and Mine Automation,2019,45(4):1-5.
[10] 孙继平, 孙雁宇. 矿井火灾监测与趋势预测方法研究[J]. 工矿自动化,2019,45(3):1-4. SUN Jiping, SUN Yanyu. Research on methods of mine fire monitoring and trend prediction[J]. Industry and Mine Automation,2019,45(3):1-4.
[11] 孙继平, 孙雁宇, 范伟强. 基于可见光和红外图像的矿井外因火灾识别方法[J]. 工矿自动化,2019,45(5):1-5. SUN Jiping, SUN Yanyu, FAN Weiqiang. Mine exogenous fire identification method based on visible light and infrared images[J]. Industry and Mine Automation,2019,45(5):1-5.
[12] 孙继平, 李月. 基于双目视觉的矿井外因火灾感知与定位方法[J]. 工矿自动化,2021,47(6):12-16. SUN Jiping, LI Yue. Binocular vision-based perception and positioning method of mine external fire[J]. Industry and Mine Automation,2021,47(6):12-16.
[13] 孙继平, 崔佳伟. 矿井外因火灾感知方法[J]. 工矿自动化,2021,47(4):1-5. SUN Jiping, CUI Jiawei. Mine external fire sensing method[J]. Industry and Mine Automation,2021,47(4):1-5.
[14] 孙继平. 煤矿瓦斯和煤尘爆炸感知报警与爆源判定方法研究[J]. 工矿自动化,2020,46(6):1-5. SUN Jiping. Research on method of coal mine gas and coal dust explosion perception alarm and explosion source judgment[J]. Industry and Mine Automation,2020,46(6):1-5.
[15] 孙继平, 范伟强. 基于视频图像的瓦斯和煤尘爆炸感知报警及爆源判定方法[J]. 工矿自动化,2020,46(7):1-4. SUN Jiping, FAN Weiqiang. Gas and coal dust explosion perception alarm and explosion source judgment method based on video image[J]. Industry and Mine Automation,2020,46(7):1-4.
[16] 龙荣生. 矿井地质学[M]. 北京: 煤炭工业出版社, 1991. LONG Rongsheng. Mine geology[M]. Beijing: China Coal Industry Publishing House, 1991.
[17] 张延松, 王德明, 朱红青. 煤矿爆炸、火灾及其防治技术[M]. 徐州: 中国矿业大学出版社, 2007. ZHANG Yansong, WANG Deming, ZHU Hongqing. Coal mine explosion, fire and prevention technology[M]. Xuzhou: China University of Mining and Technology Press, 2007.
[18] 袁瑞甫, 李怀珍. 含瓦斯煤动态破坏模拟实验设备的研制与应用[J]. 煤炭学报,2013,38(增刊1):117-123. YUAN Ruifu, LI Huaizhen. Development and application of simulation test apparatus for gassy coal dynamic failure[J]. Journal of China Coal Society,2013,38(S1):117-123.
-
期刊类型引用(48)
1. 柳小波, 丛峰武, 张宝金, 马新博, 陈晓云, 张兴帆, 王连成. 我国金属矿山智慧化转型实践与展望. 金属矿山. 2025(05) 百度学术
2. 武岳,曹天宇. 基于物联网的智慧矿山矿灾应急指挥调度系统. 能源科技. 2024(01): 23-26 . 百度学术
3. 卢波铭. 智慧矿山信息化与智能化规划方案. 建材世界. 2024(05): 121-124 . 百度学术
4. 杨军,张超,杨恢凡,郭一楠. 煤炭工业互联网技术研究综述. 工矿自动化. 2023(04): 23-32 . 本站查看
5. 宋一鸣,刘永红. 基于人—资源—环境视角的智能矿山系统设计研究. 包装工程. 2023(S1): 277-284 . 百度学术
6. 余洋,张申. 智能矿山基础平台建设及其发展趋势. 工矿自动化. 2023(09): 13-22+121 . 本站查看
7. 毛馨凯. 基于物联网的矿井瓦斯智能监测系统关键技术浅析. 科技视界. 2023(34): 68-72 . 百度学术
8. 吕康宁. 基于PLC的矿井无人值守系统的研究与应用. 同煤科技. 2022(01): 38-41 . 百度学术
9. 赵忠证,李元泽,张旭辉,毛清华. 纳林河二矿自动化综采工作面组织方式与产能优化. 陕西煤炭. 2022(03): 139-143 . 百度学术
10. 王鹏,胡而已,徐金陵,杨林,韩培强,张冬阳. 智能化矿山数据融合共享规范体系研究. 中国煤炭. 2022(06): 19-27 . 百度学术
11. 朱延涛. 智能化选煤厂工业通讯平台的研究应用. 煤炭加工与综合利用. 2022(07): 31-33+37 . 百度学术
12. 张立亚,李晨鑫,刘斌,姜玉峰. 矿山物联网区块链机制研究. 工矿自动化. 2022(08): 10-15 . 本站查看
13. 樊荣,徐青云. 工业物联网背景下智慧矿山建设现状及关键技术探讨. 煤. 2022(09): 25-29 . 百度学术
14. 吴季洪,袁欣鹏,王浩盛,赵凯. 矿山物联网技术发展现状与趋势. 陕西煤炭. 2022(06): 211-215 . 百度学术
15. 胡全宏,胡文博,张雷磊,杨东伟,杨宁峰,徐志亮,高学明. 羊场湾煤矿智能化建设实践. 工矿自动化. 2022(S2): 25-26 . 本站查看
16. 温良,吴文臻,李起伟. 矿用F5G架构的智能化煤矿建设方案研究. 煤炭科学技术. 2022(11): 176-182 . 百度学术
17. 荆诚,刘丽静,陈醒,周朴凡. 面向对象的设备建模方法及其应用. 工矿自动化. 2021(04): 113-115+120 . 本站查看
18. 贺耀宜,刘丽静,赵立厂,周李兵. 基于工业物联网的智能矿山基础信息采集关键技术与平台. 工矿自动化. 2021(06): 17-24 . 本站查看
19. 何力,刘福龙,吴楠楠. 国内某大型大水矿山智慧矿山建设实践. 冶金自动化. 2021(S1): 1-5 . 百度学术
20. 袁亮,俞啸,丁恩杰,赵小虎,冯仕民,张达,刘统玉,王卫东,黄艳秋. 矿山物联网人-机-环状态感知关键技术研究. 通信学报. 2020(02): 1-12 . 百度学术
21. 秦晓伟,王立兵,汪磊,李敬兆,张小波. 区块链技术在矿山物联网中的应用研究. 工矿自动化. 2020(03): 21-26 . 本站查看
22. 任晓红,万红,俞啸,丁恩杰. 基于Park变换的三电平逆变器开路故障诊断. 工矿自动化. 2020(05): 82-86+93 . 本站查看
23. 丁恩杰,俞啸,廖玉波,吴传龙,陈伟,郁万里,王威. 基于物联网的矿山机械设备状态智能感知与诊断. 煤炭学报. 2020(06): 2308-2319 . 百度学术
24. 丁恩杰,廖玉波,张雷,刘忠育. 煤矿信息化建设回顾与展望. 工矿自动化. 2020(07): 5-11 . 本站查看
25. 王国法,任怀伟,庞义辉,曹现刚,赵国瑞,陈洪月,杜毅博,毛善君,徐亚军,任世华,程建远,刘思平,范京道,吴群英,孟祥军,杨俊哲,余北建,宣宏斌,孙希奎,张殿振,王海波. 煤矿智能化(初级阶段)技术体系研究与工程进展. 煤炭科学技术. 2020(07): 1-27 . 百度学术
26. 阎俊豪,贾宗璞,李东印. 智能矿山车联网体系架构与关键技术. 煤炭科学技术. 2020(07): 249-254 . 百度学术
27. 王海波,赵立厂. 矿山物联网的泛在特征分析与泛在能力建设. 煤炭科学技术. 2020(07): 127-133 . 百度学术
28. 郭艳,黎慧斌. 基于大数据技术的自然资源数据快速更新体系研究. 测绘与空间地理信息. 2020(08): 135-137+142 . 百度学术
29. 刘景勇,张建强,王伟. 基于云服务的矿业集团监控联网系统设计与实践. 能源与环保. 2020(09): 147-152 . 百度学术
30. 王华东. 基于UWB+LoRa协议的精确定位系统在煤矿的安装使用. 电气防爆. 2020(05): 33-38 . 百度学术
31. 赵清,杨维,胡青松. 煤矿物联网灾后自适应重构加权分簇组网算法. 煤炭学报. 2020(S2): 1118-1126 . 百度学术
32. 贺耀宜. 智能矿山物联网存在技术短板及解决思路研究探讨. 智能矿山. 2020(01): 137-144 . 百度学术
33. 王华东. 基于数字传输的安全监控系统在煤矿的实践应用. 电气防爆. 2019(01): 35-39 . 百度学术
34. 谭章禄,马营营,郝旭光,张越. 智慧矿山标准发展现状及路径分析. 煤炭科学技术. 2019(03): 27-34 . 百度学术
35. 秦翥. 矿用装备全生命周期服务系统的研究与应用. 煤炭科学技术. 2019(04): 44-49 . 百度学术
36. 李小四,马建民,王莹莹. 智慧矿山建设的演进及发展趋势. 工矿自动化. 2019(09): 65-69 . 本站查看
37. 李洪文. 紫金山金铜矿智慧矿山建设实践. 工程建设. 2019(08): 85-91 . 百度学术
38. 冯仕民,丁恩杰,刘忠育,俞啸,孟磊,赵志凯. 矿山人员状态信息描述方法研究. 物联网学报. 2019(04): 9-16 . 百度学术
39. 张杰文. 矿山物联网与智慧矿山的联系与区别. 科学技术创新. 2018(16): 73-75 . 百度学术
40. 张申,胡青松,王刚. 矿山物联网标准建设的思考. 工矿自动化. 2018(01): 1-5 . 本站查看
41. 谭章禄,马营营. 煤炭大数据研究及发展方向. 工矿自动化. 2018(03): 49-52 . 本站查看
42. 李小四,马建民. 智能矿山建设规范解读及其定位分析. 科学技术创新. 2018(31): 140-141 . 百度学术
43. 朱浩. FCS技术在矿山物联网感知层的应用. 煤矿机电. 2018(05): 74-76 . 百度学术
44. 付碧锋. 现代矿山安全管理新技术. 科技创新导报. 2018(16): 181+183 . 百度学术
45. 冯仕民,刘忠育,俞啸,孟磊,赵志凯,丁恩杰. 矿山物联网人员情境描述与不安全行为识别. 物联网学报. 2018(04): 93-98 . 百度学术
46. 卢新明,阚淑婷,张杏莉. 矿山物联网云计算与平台技术. 工矿自动化. 2018(02): 1-5 . 本站查看
47. 丁三青. 我国矿山物联网产业发展现状及其对策研究. 工矿自动化. 2017(12): 1-5 . 本站查看
48. 施卫祖. 加快矿山物联网建设. 工矿自动化. 2017(11): 1-4 . 本站查看
其他类型引用(25)