Research and application of combined load-bearing shell support for deep soft rock roadway
-
摘要: 深部软岩巷道支护问题影响因素多、情况复杂,理论研究工作仍处于探索阶段,而依靠提高支护材料强度和采用注浆锚杆无法从根本上解决该问题,且成本高。分析了深部软岩巷道表层围岩应力分布情况,其变形特点为应力向深部转移,巷道表层围岩应力降低但变形量较大,得出解决深部软岩巷道支护难题的关键是在尽可能提高支护结构强度的同时,降低支护结构周边切向应力,即合理设计内层支护小结构、构筑中间应力消减层,使其与外层原岩大结构共同作用,形成深部软岩巷道支护体系,增强围岩自承能力。根据内层支护小结构的要求,提出了主动支护和被动支护相结合的锚架注组合承载壳全断面联合支护技术,即在锚杆(索)支护的基础上,采用型钢支护联合壁后充填结构形成具有一定厚度和较高强度的内层支护结构体,从而减少顶板、煤壁和空气接触,同时充填注浆材料全断面向深部软岩裂隙扩散凝固,钢架在围岩发生一定让压变形后起到径向约束作用,可强化围岩承压环,保证围岩稳定性。针对丁集矿西二采区回风石门修复工程,采用高预紧力锚索+U型钢棚+注浆的锚架注组合承载壳全断面联合支护结构,通过深孔爆破方法构筑中间应力消减层。矿压观测结果表明,巷道两帮移近量最大值为349 mm,顶板下沉量最大值为323 mm,巷道变形得到有效控制。Abstract: There are many influencing factors and complex conditions in deep soft rock roadway support. The theoretical research is still in the exploratory stage. Moreover, the method of relying on improving the strength of support materials and the use of grouting bolts can not fundamentally solve the problems and the cost is high. This paper analyzed the stress distribution of deep soft rock roadway surface surrounding rock. The deformation characteristic was that the stress transferred to deep mine and the stress of roadway surface surrounding rock reduced while the deformation increased. It was found that the crucial methods to solve the deep soft rock roadway support problems are to maximize the strength of supporting structure and to reduce the tangential stress around the supporting structure. This meant that the small inner supporting structure should be well designed and the intermediate stress reduction layer should be constructed. The inner supporting structure and the large outer structure of original rock were designed to form a deep soft rock roadway support system to enhance the self-supporting capacity of surrounding rock. According to the requirement of the small inner supporting structure, a full-section anchor shed grout joint support technology of load-bearing shell combined with active and passive support was proposed. On the basis of anchor (cable) support, steel supporting structure and filling structure behind walls formed inner supporting structure with certain thickness and high strength. Therefore, the structure reduced the contact between the roof, the coal wall and the air. At the same time, the filling grouting material spread and solidified in the deep soft rock cracks. The steel frame acted as a radial restraint after certain pressure-relief deformation of the surrounding rock, which could strengthen the surrounding rock load-bearing ring and ensure the stability of the surrounding rock. In the windstone gate restoration project of No.2 West Mining Area of Dingji Coal Mine, a full-section anchor shed grout joint support technology of high preload anchor cable + U-shaped steel shed + anchor shed grout injection was adopted. And the intermediate stress reduction layer was constructed by deep hole blasting method. The mine pressure observation results showed that the maximum value of the two sides of the roadway was 349 mm, the maximum value of the roof subsidence was 323 mm and the roadway deformation was effectively controlled.
-
-
期刊类型引用(43)
1. 马宏伟,薛旭升,毛清华,齐爱玲,王鹏,聂珍,张旭辉,曹现刚,赵英杰,郭逸风. 论“采煤就是采数据”的学术思想. 煤炭科学技术. 2025(01): 272-283 . 百度学术
2. 朱懋. 采煤机重载工况下转矩自动化补偿控制方法的研究. 机械管理开发. 2024(06): 323-325 . 百度学术
3. 张超. 基于模块化总线技术的采煤机自动监控系统设计. 矿业装备. 2024(12): 178-180 . 百度学术
4. 管政. 模糊PID电液控制对采煤机姿态调整的效果分析. 机械管理开发. 2023(08): 29-30+33 . 百度学术
5. 陈浩锐. 基于PLC的掘进机截割控制系统研究. 机械管理开发. 2023(08): 200-201+204 . 百度学术
6. 李春华,孙晓,宁权. 智能化采煤工作面采煤机自动监控系统的设计与应用. 山东煤炭科技. 2023(10): 87-90 . 百度学术
7. 李乾. 电驱动采煤机控制系统设计与实现. 机械研究与应用. 2023(05): 164-167 . 百度学术
8. 张宇杰. 采煤机与刮板输送机联动运行控制技术的应用研究. 机械管理开发. 2023(11): 284-286 . 百度学术
9. 赵晓璐. 采煤机运行状态监控系统设计及应用分析. 西部探矿工程. 2023(12): 162-164 . 百度学术
10. 刘晓鹏. 基于PLC的采煤机智能控制系统设计. 机械管理开发. 2022(02): 230-232 . 百度学术
11. 常映辉. 采煤机自动化自整定控制系统的设计及效果分析. 现代工业经济和信息化. 2022(08): 29-30+56 . 百度学术
12. 魏勇. 电牵引采煤机电控系统的优化设计与改造. 机电工程技术. 2021(01): 197-199 . 百度学术
13. 李春庆. 突变工况下采煤机机电控制优化. 机械管理开发. 2021(01): 101-103 . 百度学术
14. 韵凯. 采煤机记忆截割控制系统的研究与设计. 机械管理开发. 2021(06): 245-247 . 百度学术
15. 许连丙. 基于多传感器信息融合的采煤机状态监测系统设计. 自动化应用. 2021(04): 126-127+130 . 百度学术
16. 贺新星. 基于智能自动化的采煤机协同控制系统设计. 中国新技术新产品. 2021(11): 5-8 . 百度学术
17. 王振东. 采煤机智能控制系统的优化研究. 机械管理开发. 2021(08): 271-272 . 百度学术
18. 蔡德程,陈缤,关欣,李郝林. 机床热特性优化研究综述. 上海理工大学学报. 2021(05): 443-451 . 百度学术
19. 李强. 基于PLC的采煤机运行监控系统设计. 机电工程技术. 2020(01): 36-37 . 百度学术
20. 张旭辉,潘格格,张雨萌,樊红卫,毛清华,车万里,薛旭升,王川伟,赵友军. 采掘装备绿色设计与评价技术研究. 工矿自动化. 2020(02): 23-28+49 . 本站查看
21. 郭帅. 机械化采煤中电气自动化的应用. 当代化工研究. 2020(04): 70-71 . 百度学术
22. 闫珂. 提高变频器驱动型提升机运行稳定性的策略研究. 机械管理开发. 2020(03): 58-60 . 百度学术
23. 杨健,李小辉. 掘进工作面远程视频监控控制系统设计. 中国石油和化工标准与质量. 2020(04): 220-221 . 百度学术
24. 王玮. 矿井综采工作面智能综采控制系统研究. 机电工程技术. 2020(04): 122-123+186 . 百度学术
25. 淮文军,王明芳. 基于DSP和PLC的电牵引采煤机电控系统优化设计. 煤矿机械. 2020(05): 206-208 . 百度学术
26. 兰天安. 煤矿采煤机控制系统设计研究. 能源与环保. 2020(05): 113-115+126 . 百度学术
27. 刘章敏. 煤矿综采工作面智能监控系统设计. 机电工程技术. 2020(05): 106-107+126 . 百度学术
28. 周展,赵亦辉,刘庚,蒋峰. 基于ACS800变频控制技术的采煤机变频调速系统. 煤矿机电. 2020(03): 16-19 . 百度学术
29. 付欣睿. 煤矿电牵引采煤机自动控制系统设计. 机械管理开发. 2020(10): 249-250+265 . 百度学术
30. 张耀明. 自动化工作面电牵引采煤机控制系统优化设. 煤炭科技. 2020(05): 36-38 . 百度学术
31. 王振宇. 采煤机信息系统的设计与实现. 机械管理开发. 2020(11): 223-224+254 . 百度学术
32. 曹连民,孙士娇,李建楠,吕玉廷. 煤矿工作面采煤机虚拟仿真实验教学研究. 实验技术与管理. 2019(02): 198-203 . 百度学术
33. 樊大鹏. 以多传感器为基础的电牵引采煤机监测监控系统探析. 机电工程技术. 2019(01): 158-160 . 百度学术
34. 杨成喜. 电牵引采煤机调高系统的操作及维护探讨. 机电工程技术. 2019(01): 155-157 . 百度学术
35. 刘春亮. 交流变频调速采煤机恒功率自动控制系统研究. 机电工程技术. 2019(04): 49-50+139 . 百度学术
36. 韩冰. 基于PLC的采煤机远程监控系统设计. 化学工程与装备. 2019(11): 173-174 . 百度学术
37. 张旭辉,谢亚洲. 基于DSP的悬臂式掘进机控制系统设计. 煤炭工程. 2019(12): 172-176 . 百度学术
38. 薛瑞梓. 煤矿采煤机自动化控制系统的研究和设计. 机电工程技术. 2019(12): 67-69 . 百度学术
39. 刘福平. 电牵引采煤机电控系统的研究与改进. 机械管理开发. 2018(06): 204-205+230 . 百度学术
40. 许刚. 多传感器下的电牵引采煤机综合监测系统分析. 煤矿机械. 2018(02): 55-57 . 百度学术
41. 赵友军,赵亦辉,张旭辉. 采煤机数字化技术发展及展望. 重型机械. 2018(04): 29-34 . 百度学术
42. 安全林. 大采高工作面采煤自动化在阳煤一矿的应用与探讨. 能源技术与管理. 2017(03): 174-175 . 百度学术
43. 李玉华,杨传常,闫业臣,刘广民. 采煤机电缆牵引拉力过载保护装置. 工矿自动化. 2017(12): 11-15 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 63
- HTML全文浏览量: 12
- PDF下载量: 12
- 被引次数: 47