基于改进BP神经网络的矿用通风机故障诊断

孙慧影, 林中鹏, 黄灿, 陈鹏

孙慧影,林中鹏,黄灿,等.基于改进BP神经网络的矿用通风机故障诊断[J].工矿自动化,2017,43(4):37-41.. DOI: 10.13272/j.issn.1671-251x.2017.04.009
引用本文: 孙慧影,林中鹏,黄灿,等.基于改进BP神经网络的矿用通风机故障诊断[J].工矿自动化,2017,43(4):37-41.. DOI: 10.13272/j.issn.1671-251x.2017.04.009
SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
Citation: SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009

基于改进BP神经网络的矿用通风机故障诊断

基金项目: 

国家自然科学基金项目(61304080)

详细信息
  • 中图分类号: TD635

Fault diagnosis of mine ventilator based on improved BP neural network

  • 摘要: 针对矿用通风机故障与征兆对应关系复杂的特点,提出一种用动态适应布谷鸟搜索算法优化BP神经网络并进行故障诊断的方法。利用动态适应布谷鸟搜索算法的全局搜索能力,求解神经网络的最优初始参数;然后对BP神经网络进行学习训练,得到最终的故障诊断模型。实例分析结果表明,该方法能有效地进行矿用通风机故障诊断,且具有收敛速度快、精度高的特点,对测试样本的诊断准确率达到了92.5%。
    Abstract: In view of characteristics of complicated correlation of mine ventilator failure and symptom, a fault diagnosis method using BP neural network optimized by dynamic adaptation cuckoo search algorithm was proposed. The optimal initial parameters of neural network are solved by using global search ability of dynamic adaptation cuckoo search algorithm. Then, the BP neural network is trained to obtain the final fault diagnosis model. The example analysis results show that the method can effectively achieve fault diagnosis of mine ventilator and has the characteristics of fast convergence and high precision, and the diagnosis accuracy of the test sample is 92.5%.
  • 期刊类型引用(14)

    1. 郝志会,孙玉博,郑义. 高噪声场景下矿井通风机滚动轴承故障诊断. 煤炭工程. 2024(12): 161-168 . 百度学术
    2. 秦福星,杨元章. 基于组合式BP的级差空压机故障诊断. 船电技术. 2023(05): 32-34 . 百度学术
    3. 陈家璘,周正,冯伟东,贺易,李静茹,赵世文. 一种无线传感器网络节点的故障检测算法. 计算技术与自动化. 2021(01): 38-42 . 百度学术
    4. 经海翔,黄友锐,徐善永,唐超礼. 基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究. 工矿自动化. 2021(11): 53-60 . 本站查看
    5. 陈耀辉,马星河. 一种改进CS-BP神经网络算法的矿用变压器故障诊断方法. 煤矿机电. 2021(06): 7-10 . 百度学术
    6. 冀汶莉,郗刘涛,王斌. 面向不平衡数据集的煤矿监测系统异常数据识别方法. 工矿自动化. 2020(01): 18-25 . 本站查看
    7. 窦国贤,高杨. 一种改进的电网信息系统自动化故障融合监测技术. 计算技术与自动化. 2020(01): 34-38 . 百度学术
    8. 窦国贤,高杨. 基于小波分析方法检测电网信息故障的研究. 计算机测量与控制. 2020(09): 38-41+57 . 百度学术
    9. 王思. 基于多传感器的运动员训练信息融合分析系统设计. 计算技术与自动化. 2020(03): 140-146 . 百度学术
    10. 闫俊泉,李东明,孙学锋,徐才. 基于改进神经网络的电机轴承故障的诊断. 国外电子测量技术. 2019(01): 5-10 . 百度学术
    11. 赵见龙,张永超. 基于LabVIEW的矿井主通风机滚动轴承监测系统设计. 煤矿机械. 2019(07): 159-162 . 百度学术
    12. 顾闯. 煤炭企业工控网络安全防护与预测方法研究. 煤炭科学技术. 2019(11): 143-147 . 百度学术
    13. 覃缓贵. 矿用离心风机故障诊断在线监测系统设计. 煤炭技术. 2018(06): 234-236 . 百度学术
    14. 杨会. 基于螳螂眼算法无人矿车图像处理系统研究. 微型机与应用. 2017(17): 92-95 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  87
  • HTML全文浏览量:  10
  • PDF下载量:  9
  • 被引次数: 32
出版历程
  • 刊出日期:  2017-04-09

目录

    /

    返回文章
    返回