金属粉尘浓度检测技术研究

张所容, 陈建阁

张所容,陈建阁.金属粉尘浓度检测技术研究[J].工矿自动化,2017,43(3):57-60.. DOI: 10.13272/j.issn.1671-251x.2017.03.013
引用本文: 张所容,陈建阁.金属粉尘浓度检测技术研究[J].工矿自动化,2017,43(3):57-60.. DOI: 10.13272/j.issn.1671-251x.2017.03.013
ZHANG Suorong, CHEN Jiange. Research of detection technology of metal dust concentratio[J]. Journal of Mine Automation, 2017, 43(3): 57-60. DOI: 10.13272/j.issn.1671-251x.2017.03.013
Citation: ZHANG Suorong, CHEN Jiange. Research of detection technology of metal dust concentratio[J]. Journal of Mine Automation, 2017, 43(3): 57-60. DOI: 10.13272/j.issn.1671-251x.2017.03.013

金属粉尘浓度检测技术研究

基金项目: 

国家重点研发计划资助项目(2016YFC0801703)

国家自然科学基金资助项目(U1261205)

详细信息
  • 中图分类号: TD711.35

Research of detection technology of metal dust concentratio

  • 摘要: 针对称重法无法实现金属粉尘浓度的实时、在线检测问题,分析了光散射法和电荷感应法应用于金属粉尘浓度检测技术的基本原理,设计了基于光散射法和基于电荷感应法的金属粉尘浓度信号采集及处理电路。实验结果表明:在检测初期,光散射法和电荷感应法检测误差均较小;但在长时间连续检测后,光散射法检测误差增大且检测值均偏高,而电荷感应法检测精度仍较高。
    Abstract: For problem that weighing method cannot realize real-time and on-line detection for metal dust concentration, basic principle of light scattering method and charge induction method for metal dust concentration detection were analyzed, and signal acquisition and processing circuits for metal dust concentration detection were designed which were respectively based on light scattering method and charge induction method. The experimental results show that errors of light scattering method and charge induction method are small in early detection. Error of light scattering method increases and detection value is higher than standard reference value after long-time continuous detection, while detection accuracy of charge induction method is still high.
  • 期刊类型引用(5)

    1. 张凯. 液压支架自动化后人工调控策略推荐系统. 山西焦煤科技. 2024(02): 33-36+41 . 百度学术
    2. 刘萌,付翔,姜玉龙,刘彬,杨宇琪,秦一凡,孙岩. 液压支架姿态数字孪生精准快速映射方法. 工矿自动化. 2024(06): 136-141+158 . 本站查看
    3. 虞婧,魏红磊,周亘儒,孟龙,陈浩. 基于数字孪生技术的低碳选煤厂能源监控平台应用研究. 煤炭工程. 2024(12): 12-18 . 百度学术
    4. 王栎淇,范维,陈传军,李森,付文阳. 基于实时数据驱动的车间输送线数字孪生系统研究与实现. 制造业自动化. 2023(08): 171-177 . 百度学术
    5. 鲍久圣,张可琨,王茂森,阴妍,杨磊,葛世荣. 矿山数字孪生MiDT:模型架构、关键技术及研究展望. 绿色矿山. 2023(01): 166-177 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  120
  • HTML全文浏览量:  19
  • PDF下载量:  20
  • 被引次数: 6
出版历程
  • 刊出日期:  2017-03-09

目录

    /

    返回文章
    返回