一种数字式煤矿安全监控系统设计

魏峰

魏峰.一种数字式煤矿安全监控系统设计[J].工矿自动化,2017,43(2):19-23.. DOI: 10.13272/j.issn.1671-251x.2017.02.005
引用本文: 魏峰.一种数字式煤矿安全监控系统设计[J].工矿自动化,2017,43(2):19-23.. DOI: 10.13272/j.issn.1671-251x.2017.02.005
WEI Feng. Design of a digital coal mine safety monitoring and control system[J]. Journal of Mine Automation, 2017, 43(2): 19-23. DOI: 10.13272/j.issn.1671-251x.2017.02.005
Citation: WEI Feng. Design of a digital coal mine safety monitoring and control system[J]. Journal of Mine Automation, 2017, 43(2): 19-23. DOI: 10.13272/j.issn.1671-251x.2017.02.005

一种数字式煤矿安全监控系统设计

基金项目: 

国家重点研发计划资助项目(2016YFC0801405)

详细信息
  • 中图分类号: TD76

Design of a digital coal mine safety monitoring and control system

  • 摘要: 针对目前煤矿安全监控系统存在的通信实时性差、可靠性不高、易受电磁干扰等问题,提出了一种数字式煤矿安全监控系统设计方案,介绍了系统软、硬件设计方案及关键技术。该系统基于CAN总线和工业以太环网的双重冗余结构,以ARM处理器LPC2294和嵌入式操作系统μC/OS-Ⅱ为核心。测试结果表明,在10 km CAN总线,32个数字分站,200台传感器、执行器规模下,该系统CAN总线通信成功率为99.97%,利用率为40%~60%;系统连续运行40 d,数据稳定,无中断、异常数据产生,技术指标符合AQ 6201—2006《煤矿安全监控系统通用技术要求》。
    Abstract: For poor real-time communication, stability and anti electromagnetic interference performance of existing coal mine safety monitoring and control system, a digital coal mine safety monitoring and control system was proposed, and hardware scheme, software scheme and key technologies of the system were introduced. The system adopts dual redundancy structure of CAN bus and industrial Ethernet ring network, and takes LPC2294 ARM processor and μC/OS-Ⅱembedded operation system as cores. The test results show that communication success rate of CAN bus is 99.97% as well as utilization ratio is 40%-60% of the system with 10 km CAN bus, 32 digital substations and 200 sensors and actuators. The system can run 40 days continuously with stable data communication and without interrupted and abnormal data, and technique indexes of the system meet requirements of AQ 6201-2006 General technical requirements of coal mine safety monitoring and control system.
  • 期刊类型引用(6)

    1. 张贝贝,罗松飞. 基于STFT改进图像增强算法的模糊指纹痕迹检验技术. 山东理工大学学报(自然科学版). 2025(04): 41-46 . 百度学术
    2. 王泰基. 基于ITLBO-AFSA优化FCM算法的矿井图像增强. 工矿自动化. 2024(S1): 25-28 . 本站查看
    3. 孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 . 百度学术
    4. 曹成名,李浩东,王腾飞. 声音增强技术在煤矿采空区勘探中的应用. 电声技术. 2024(08): 17-19 . 百度学术
    5. 张海庆. 不同天气条件下光学图像清晰度实时增强研究. 自动化与仪器仪表. 2024(11): 39-42+47 . 百度学术
    6. 丁文博,云龙. 基于RetinaNet深度网络的煤矿带式输送机异物智能识别方法. 中国煤炭. 2024(S1): 75-81 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  92
  • HTML全文浏览量:  22
  • PDF下载量:  13
  • 被引次数: 6
出版历程
  • 刊出日期:  2017-02-09

目录

    /

    返回文章
    返回