Wireless networked control systems: an overview and recent developments
-
摘要:
无线网络化控制系统(WNCS)将无线通信技术与控制系统深度融合,成为物联网(IoT)、工业物联网(IIoT)及触觉互联网(TI)的重要组成部分。系统性地讨论了WNCS的基本架构、关键组成和主要性能指标,并深入分析了应对延迟、数据包丢失和能耗等挑战的先进控制算法,包括模型预测控制(MPC)、鲁棒控制、自适应控制及基于事件触发的控制(ETC)。总结了WNCS最新研究进展,如延迟、数据速率和可靠性之间的权衡,带有可变数据包长度的无线反馈控制,无编码数据传输,最优下行−上行调度,实时远程估计与混合自动重传请求(HARQ),空中计算与优化,远程状态估计的稳定性条件,深度学习联合估计−控制−调度。展望了WNCS未来发展方向,如5G、边缘计算和人工智能(AI)技术在WNCS中的应用,包括跨层设计、资源优化和安全性增强。研究旨在提供系统全面的技术指导和设计理念,以推动WNCS在工业自动化、智能基础设施等领域的广泛应用。
Abstract:Wireless Networked Control Systems (WNCS) integrate wireless communication technologies with control systems, becoming an essential part of the Internet of Things (IoT), Industrial Internet of Things (IIoT), and Tactile Internet (TI). This paper systematically discusses the basic architecture, key components, and main performance metrics of WNCS. It also provides an in-depth analysis of advanced control algorithms developed to address challenges such as latency, packet loss, and energy consumption. These algorithms include Model Predictive Control (MPC), Robust Control, Adaptive Control, and Event-Triggered Control (ETC). Recent advancements in WNCS research are summarized, covering topics such as the trade-offs between latency, data rate, and reliability, wireless feedback control with variable packet lengths, uncoded data transmission, optimal downlink-uplink scheduling, real-time remote estimation, Hybrid Automatic Repeat Request (HARQ), air computing and optimization, stability conditions for remote state estimation, and the integration of deep learning for joint estimation, control, and scheduling. The paper also explores the future directions of WNCS development, including the application of 5G, Edge Computing, and Artificial Intelligence (AI) technologies, with a focus on cross-layer design, resource optimization, and enhanced security. The research provides comprehensive technical guidance and design concepts to drive the widespread adoption of WNCS in industrial automation, smart infrastructure, and beyond.
-
-
[1] WALSH G C,YE Hong,BUSHNELL L G. Stability analysis of networked control systems[J]. IEEE Transactions on Control Systems Technology,2002,10(3):438-446. DOI: 10.1109/87.998034
[2] MONTESTRUQUE L A,ANTSAKLIS P J. Networked control systems:a model-based approach[C]. Mediterranean Conference on Control and Automation,Kusadasi,2004:1-6.
[3] MENG M,DEL POBIL A P. Wireless networked control systems:a survey of recent trends[J]. IEEE Industrial Electronics Magazine,2015,9(3):49-58. DOI: 10.1109/MIE.2015.2468134
[4] PARK P,COLERI ERGEN S,FISCHIONE C,et al. Wireless network design for control systems:a survey[J]. IEEE Communications Surveys & Tutorials,2018,20(2):978-1013.
[5] BAILLIEUL J,ANTSAKLIS P J. Control and communication challenges in networked real-time systems[J]. Proceedings of the IEEE,2007,95(1):9-28. DOI: 10.1109/JPROC.2006.887290
[6] GOLDSMITH A J,WICKER S B. Design challenges for energy-constrained ad hoc wireless networks[J]. IEEE Wireless Communications,2002,9(4):8-27. DOI: 10.1109/MWC.2002.1028874
[7] HESPANHA J P,NAGHSHTABRIZI P,XU Yonggang. A survey of recent results in networked control systems[J]. Proceedings of the IEEE,2007,95(1):138-162. DOI: 10.1109/JPROC.2006.887288
[8] CENA G,VALENZANO A. Industrial wired and wireless sensor networks:a survey[J]. Journal of The Franklin Institute,2011,348(1):246-262.
[9] SUN Yaohua,PENG Mugen,ZHOU Yangcheng,et al. Application of machine learning in wireless networks:key techniques and open issues[J]. IEEE Communications Surveys & Tutorials,2019,21(4):3072-3108.
[10] BEMPORAD A,HEEMELS M. Networked control systems:introduction[J]. European Journal of Control,2007,13(2/3):93-94.
[11] ZHANG Wei,BRANICKY M S,PHILLIPS S M. Stability of networked control systems[J]. IEEE Control Systems Magazine,2001,21(1):84-99. DOI: 10.1109/37.898794
[12] ZHANG L M,ISHII H. Fault-tolerant control systems in the presence of wireless networked-induced delays and packet losses[J]. IEEE Transactions on Control Systems Technology,2008,16(5):1023-1034.
[13] WILLIG A. Recent and emerging topics in wireless industrial communications:a selection[J]. IEEE Transactions on Industrial Informatics,2008,4(2):102-124. DOI: 10.1109/TII.2008.923194
[14] AKYILDIZ I F,SU Weilian,SANKARASUBRAMANIAM Y,et al. A survey on sensor networks[J]. IEEE Communications Magazine,2002,40(8):102-114. DOI: 10.1109/MCOM.2002.1024422
[15] SENESKY M G,PAPEN G C,SASTRY S S. Multivariable adaptive control of MEMS gyroscopes[J]. IEEE Transactions on Control Systems Technology,2005,13(1):73-79.
[16] VITTURI S,ZUNINO C,VALENZANO A. On the use of Ethernet at low speed levels:the EtherCAT case[J]. IEEE Transactions on Industrial Informatics,2006,2(2):75-81.
[17] PALATTELLA M R,ACCETTURA N,VILAJOSANA X,et al. Standardized protocol stack for the Internet of (important) things[J]. IEEE Communications Surveys & Tutorials,2013,15(3):1389-1406.
[18] STANKOVIC J A. Wireless sensor networks:From research to reality[J]. ACM SIGBED Review,2004,1(4):1-6,.
[19] SCHENATO L,SINOPOLI B,FRANCESCHETTI M,et al. Foundations of control and estimation over lossy networks[J]. Proceedings of the IEEE,2007,95(1):163-187. DOI: 10.1109/JPROC.2006.887306
[20] ISHII H,BAŞAR T. Remote control of LTI systems over networks with state quantization[J]. Systems & Control Letters,2005,54(1):15-31.
[21] FU Minyue,XIE Lihua. The sector bound approach to quantized feedback control[J]. IEEE Transactions on Automatic Control,2005,50(11):1698-1711. DOI: 10.1109/TAC.2005.858689
[22] ZHANG W,BRANICKY M S. Stability of networked control systems with time-varying transmission times[C]. American Control Conference,Arlington,2001:4926-4931.
[23] LEONG A S,DEY S,QUEVEDO D E. Power allocation for error-prone multi-loop networked control systems with packet dropping links[J]. IEEE Transactions on Automatic Control,2016,61(8):2067-2081.
[24] FERRARI P,FLAMMINI A,RINALDI S,et al. A distributed synchronization and control technique for smart grid wide-area monitoring systems[J]. IEEE Transactions on Instrumentation and Measurement,2012,61(5):1074-1083.
[25] VITTURI S,ZUNINO C,SAUTER T. Industrial communication systems and their future challenges:next-generation Ethernet,IIoT,and 5G[J]. Proceedings of the IEEE,2019,107(6):944-961. DOI: 10.1109/JPROC.2019.2913443
[26] BRANICKY M S,PHILLIPS S M,ZHANG Wei. Stability of networked control systems:explicit analysis of delay[C]. American Control Conference,Chicago,2002:2352-2357.
[27] ANTSAKLIS P,BAILLIEUL J. Special issue on technology of networked control systems[J]. Proceedings of the IEEE,2007,95(1):5-8. DOI: 10.1109/JPROC.2006.887291
[28] LI H,DOWER P M,KELLETT C M. Control design with communication constraints:a robust control framework[J]. Automatica,2011,47(9):2047-2053.
[29] FRANCESCHETTI M,COOK M,MEESTER R. Quantization and stabilization in large-scale networked control systems[J]. Proceedings of the IEEE,2007,95(1):127-144.
[30] ÅSTRÖM K J,WITTENMARK B. Computer-controlled systems:theory and design[M]. 3rd ed. Upper Saddle River:Prentice Hall,1997.
[31] LIU Wanchun,NAIR G,LI Yonghui,et al. On the latency,rate,and reliability tradeoff in wireless networked control systems for IIoT[J]. IEEE Internet of Things Journal,2021,8(2):723-733. DOI: 10.1109/JIOT.2020.3007070
[32] HUANG Kang,LIU Wanchun,LI Yonghui,et al. Wireless feedback control with variable packet length for industrial IoT[J]. IEEE Wireless Communications Letters,2020,9(9):1586-1590. DOI: 10.1109/LWC.2020.2998611
[33] LIU Wanchun,POPOVSKI P,LI Yonghui,et al. Wireless networked control systems with coding-free data transmission for industrial IoT[J]. IEEE Internet of Things Journal,2020,7(3):1788-1801. DOI: 10.1109/JIOT.2019.2957433
[34] HUANG Kang,LIU Wanchun,LI Yonghui,et al. Optimal downlink–uplink scheduling of wireless networked control for industrial IoT[J]. IEEE Internet of Things Journal,2020,7(3):1756-1772. DOI: 10.1109/JIOT.2019.2946878
[35] HUANG Kang,LIU Wanchun,SHIRVANIMOGHADDAM M,et al. Real-time remote estimation with hybrid ARQ in wireless networked control[J]. IEEE Transactions on Wireless Communications,2020,19(5):3490-3504. DOI: 10.1109/TWC.2020.2974225
[36] LIU Wanchun,ZANG Xin,LI Yonghui,et al. Over-the-air computation systems:optimization,analysis and scaling laws[J]. IEEE Transactions on Wireless Communications,2020,19(8):5488-5502. DOI: 10.1109/TWC.2020.2993703
[37] LIU Wanchun,QUEVEDO D E,JOHANSSON K H,et al. Stability conditions for remote state estimation of multiple systems over multiple Markov fading channels[J]. IEEE Transactions on Automatic Control,2023,68(7):4273-4280.
[38] ZHAO Zihuai,LIU Wanchun,QUEVEDO D E,et al. Deep learning for wireless-networked systems:a joint estimation-control-scheduling approach[J]. IEEE Internet of Things Journal,2024,11(3):4535-4550. DOI: 10.1109/JIOT.2023.3300074
-
期刊类型引用(8)
1. 王宇凛. 不同参数对掘进机载荷功率谱的影响分析. 机械管理开发. 2024(02): 42-43 . 百度学术
2. 赵福喜. 掘进机截齿截割作业时的受力特性研究. 机械管理开发. 2023(11): 17-19 . 百度学术
3. 宗凯,李旭,王鹏江,王旭. 悬臂式掘进机截割臂摆角跳动消除的控制方法. 黑龙江科技大学学报. 2021(01): 48-52 . 百度学术
4. 刘振广,徐正华,廖茂新,刘宏亮. 尾矿坝振动实验数据样本容量的优化研究. 南华大学学报(自然科学版). 2021(06): 35-39 . 百度学术
5. 冯君玲,田慕琴,贺颖,王茜. 纵轴式掘进机截割头载荷影响因素的仿真分析. 工矿自动化. 2020(05): 21-27 . 本站查看
6. 冯君玲,田慕琴,贺颖,王茜. 纵轴式掘进机截割臂升降运动的仿真分析. 液压与气动. 2020(09): 22-28 . 百度学术
7. 宗凯,符世琛. 大倾角巷道掘进机截割过程整机滑移的力学模型. 黑龙江科技大学学报. 2020(04): 404-410 . 百度学术
8. 宗凯,符世琛,王鹏江. 倾斜煤层掘进机整机姿态的动力学模型与响应. 黑龙江科技大学学报. 2020(05): 505-510 . 百度学术
其他类型引用(10)